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[요    약]

현대 사회에서 많은 기업들이 자율주행차에 투자하고 있으며, 이미 여러 모델이 시장에 출시되어 있고 그 사용량이 날로 증가

하고 있다. 스마트 차량은 다양한 센서를 활용하여 승객의 안전을 강화하고 있지만, 특히 호흡곤란이나 멀미가 있는 사람들에게

는 여전히 어려움이 있다. 일산화탄소(CO)와 같은 유해 물질을 함유한 담배 연기는 승객에게 위험을 초래할 뿐만 아니라 냄새와 

미세먼지로 인해 차량의 센서 생태계에 영향을 미칠 수 있으며, 다양한 질감, 색상, 모양으로 인해 감지가 어렵다. 이 논문에서

는, 이러한 문제 해결을 위해 전이 학습을 활용한 딥러닝 기반 흡연 감지 시스템을 제안한다. ImageNet을 기반으로 사전 학습된 

VGG19 네트워크는 특징 추출을 위해 담배 연기 데이터셋을 기반으로 미세 조정하여 재학습하였다. 제안하는 모델은 기존 모델

들을 능가하는 96.05%의 분류 정확도를 달성하였고, 기존 아키텍처와 비교 분석하여 문제 해결을 위한 기대치를 충족함을 확

인하였다.

[Abstract]

In contemporary times, many companies are investing in autonomous vehicles, with several models already on the market and 
their usage increasing daily. Smart vehicles utilize various sensors to enhance passenger safety, but challenges remain, particularly 
for individuals with dyspnea or motion sickness. Cigarette smoke, which contains harmful substances like carbon monoxide (CO), 
poses risks to passengers and can interfere with the vehicle’s sensor ecosystem due to its odor and particulate matter. Detecting 
cigarette smoke is challenging due to its varying textures, colors, and shapes. To address this, we propose a Deep Learning 
(DL)-based detection system using Transfer Learning (TL). A pre-trained VGG19 network, originally trained on ImageNet, was 
fine-tuned for feature extraction and trained on a cigarette smoke dataset. Our model achieved a classification accuracy of 96.05%, 
surpassing those of existing architectures. Additionally, we compared our model to current architectures and satisfied our 
expectations.

색인어 : 흡연 감지, 스마트 차량, 딥러닝, 전이 학습, 자동차

Keyword : Cigarette Smoke Detection, Smart Vehicle, Deep Learning, Transfer Learning, Automobile

http://dx.doi.org/10.9728/dcs.2025.26.4.1041
This is an Open Access article distributed under 
the terms of the Creative Commons Attribution 
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial 
use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Received  14 February 2025  Revised  03 April 2025
Accepted  14 April 2025

*Corresponding Author; Kyungbaek Kim

Tel: +82-62-530-3438
E-mail: kyungbaekkim@jnu.ac.kr

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2025.26.4.1041&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5


디지털콘텐츠학회논문지(J. DCS) Vol. 26, No. 4, pp. 1041-1057, Apr. 2025

http://dx.doi.org/10.9728/dcs.2025.26.4.1041 1042

Ⅰ. Introduction

Cigarette smoking remains the single most 

preventable cause of death and disease worldwide, and 

it is the leading cause of Chronic Obstructive 

Pulmonary Disease (COPD) and numerous other 

conditions [1]. It is a deadly habit that slowly damages 

our bodies, especially when done in enclosed spaces, 

causing considerable suffering for non-smokers. In 

recent years, the popularity of autonomous cars has 

been increasing, so it’s crucial to consider the risks 

associated with smoking in vehicles. Smoking in cars 

not only harms the smoker but also exposes 

passengers to secondhand smoke (SHS), especially in 

self-steering cars. Smoking exposes passengers to 

harmful SHS and thirdhand smoke (THS). Nonsmokers 

with respiratory issues who use autonomous cars may 

face prolonged exposure to CO due to the sealed 

windows in such vehicles. This could significantly 

impact passengers’ respiratory systems and potentially 

lead to fatal consequences. Researchers said that SHS 

can be particularly hazardous in the relatively confined 

space of an autonomous car [2]. Opening car windows 

can reduce, but not eliminate, the danger. An 

examination conducted in 2011, which monitored car 

trips involving smokers found that the concentration of 

fine particulate matter in cars where smoking occurred 

greatly exceeded international indoor air quality 

standards further posing a health threat to both 

children and adults. Similarly, according to the National 

Center, smoking one cigarette in a tightly closed 

vehicle can produce over 100 times the EPA’s 24-hour 

fine particle exposure limit [3]. These particles, 

contain cancer-causing chemicals and can lodge deep 

in a person’s lungs and irritating the respiratory 

system [4].

There are approximately 600 ingredients in 

cigarettes. When burned, it creates more than 7,000 

chemicals. Some of these chemicals are known to 

induce cancer and asthma, which can lead to death in 

humans. One of these substances is CO, respiration of 

CO is the leading cause of fatal poisoning in the world 

of endeavor [5]. CO decreases the distribution of 

oxygen (O2) to the tissues by displacing O2 from 

hemoglobin and forming carboxyhemoglobin (COHb) 

[6]. The first line of treatment for CO poisoning 

involves the administration of 100% O2 to displace CO 

from hemoglobin and restore O2 delivery to tissues 

[7]. In cases of severe CO poisoning, the only 

additional therapy available is hyperbaric O2. 

Unfortunately, hyperbaric chambers are unsuitable for 

emergency treatment, since they are relatively 

uncommon [8]. Even in locations where hyperbaric 

chambers are available, delays in initiating therapy are 

inevitable due to the time needed to transport the 

patient, assemble trained personnel, and set up the 

chamber, often resulting in frequent deaths. Another 

Research shows that 50,000 individuals in the United 

States seek treatment in emergency departments due 

to CO poisoning. High levels of exposure cause 

headaches, nausea, chest pain, and shortness of 

breath, and may require ventilation and shock 

treatment [8]. Every year, at least 420 people die in 

the U.S. from accidental CO poisoning and more than 

100,000 visit the emergency department for it.

Similarly, CO in cigarette smoke inside 

contemporary vehicles poses difficulties, especially for 

sensors monitoring exhaust emissions. The smoke can 

damage sensors, and affect their performance. In 

driverless cars, passenger smoking poses health risks 

and compromises the interior, reducing passenger 

experience. Without regular cleaning, dirt, and debris 

can potentially harm these sensors. It impedes 

vehicles’ ability to sense obstacles, assess 

surroundings, and plan routes effectively [9]. 

Consequently, if passengers smoke inside, it puts other 

occupant’s health at danger. Notably, driverless 

vehicles are equipped with over 40 major sensor 

categories, enhancing their ability to perceive and 

navigate their surroundings safely [10].

Over the past few years, advances in DL have 

driven tremendous improvements in image detection, 

segmentation, and classification, while also playing a 

vital role across various industries, from self-driving 

research to trip forecasting and fraud prevention, 

enhancing user experiences. Smoking is a major global 

issue that causes severe health crises [11]. The WHO 

estimates that around 8 million people die every year 

because of smoking [12]. Constructing an extensive 

dataset of cigar smoking and training a model for a 

predictive system poses significant obstacles where 

often utilized TL for solving classification problems. 

By employing TL principles, a DL architecture can 

leverage its prior knowledge and experience. This 

enables enhanced cigar smoke image classification, 

providing faster and more effective solutions in 
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diverse contexts. Among DL architectures, VGG19 

holds significant prominence in convolutional neural 

network (CNN) architectures. VGG19 comprises 16 

convolutional layers with 5 pooling layers and 3 

fully-connected layers [13]. Studies indicate [14] the 

successful utilization of VGG19 architecture in 

addressing diverse classification problems through 

architectural modifications and the application of TL. 

TL with CNN has been proven to work with great 

accuracy in many medical domains like diabetic 

retinopathy, Alzheimer’s disease, and skin lesion 

detection [15]-[20] among others. Therefore, TL and 

CNN are considered in our experiment, where intense 

cigar smoking detection using VGG19 following TL 

principles is not a usual procedure.

As illustrated in Fig. 1, formally in supervised 

machine learning given a source domain, DS, and 

learning task, KS, a target domain, DT , and its 

learning task, KT . TL aims to help improve the 

learning of the target predictive function ϕT (·) in KT 

using the knowledge in DS and KS, where DS ̸= DT or 

KS ̸= KT . DS represents the ImageNet and smoke 

dataset in our research and its learning task, KS, 

where KS = {γS, ϕS(·)}, given that γS is the source 

label space, and ϕS(·) is the source predictive function 

that is used to map a new image feature xi to its label 

yi. DT represents the datasets in this research and its 

learning task, KT , where KT = {γT , ϕT (·)}. As stated 

before, we want to enhance ϕT (·) of the new modality, 

DT , using the cigar smoke dataset, DS, and its 

objective function, ϕS(·) of KS. Here, we also state that 

if f [m, n] is the convolution filter, g[u,v] is the input 

image, and o[u, v] is the output feature map, this is 

how the convolution and feature map operations are 

conducted.

It is seen in the literature that VGG19 architecture 

is used successfully in solving various classification 

problems by making changes (improvements or 

modifications) on its architecture and even by making 

use of TL. In this paper, VGG19 architecture has been 

proposed for the classification of the existence of 

cigarette smoke in vehicles through images by 

modifying it with a different number of layers to 

increase the model prediction success. A new smoking 

data set was produced by collecting images from 

different online sources [21]-[24]. Smoking images in 

the dataset were used as input data in DL 

architectures. The suggested models focus on the 

definition of cigar smoke images using a combination 

of different numbers of Rectified Linear Activation 

(ReLU), Pooling and Convolution layers (3, 4, & 

6Conv_Sigmoid and 3, 4 Conv_SVM, & 

6Conv_SVM_FE). Finally, fully connected layer, 

activation function, and FE processes are used in the 

original VGG19 architecture. The approached models 

classify cigar smoke images as smoking or 

non-smoking. In this paper, the Sigmoid classifier 

layer used in VGG19 was removed and the support 

vector machine (SVM) classifier was also used instead 

including FE. Therefore, the evaluation performances 

of the proposed models with the Sigmoid, SVM 

containing FE classifier, and other recent classification 

models were also examined.

In summary, the supervised model we offer not only 

addresses current challenges but also introduces new 

advancements to the field, providing significant 

improvements in the area. The brief contribution of 

this research include:

ㆍ Introduces a new framework that can adopt a new 

modality behavior (Cigar smoke) within a smart 

car environment using DL and TL principals.

ㆍ Proposes TL-based tricks using VGG19 and fea-

ture extraction techniques for classifying smok-

ers based on smoking and non-smoking intensity, 

achieving higher accuracy.

ㆍ Aimed at offering a high-accuracy solution while 

addressing some of the shortcomings found in re-

cent studies, accurately identifies confusing ob-

jects such as lipstick, walkie-talkies, pens, and 

chocolate, as well as complex actions such as 

holding the phone vertically, drinking from a glass 

or bottle, sneezing with a folded hand, and cover-

ing faces with a hand while using an inhaler in 

front of the mouth.

ㆍ Evaluate the suggested approach for in-depth 

analysis of the newly created smoker detection 

model with current and new datasets for the 

smoker classification problem and also compare it 

with other recent CNN classification models.

The remaining of the paper is ordered as follows. 

Section II describes the literature review of recent 

studies and techniques. Section III narrated the 

background of this research, including its pros and 

current limitations. Section IV represents the detection 

methodologies with datasets used in this study. Section 

V explain the results of each experiment and the 
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conclusive brief can be found in Section VI.

Ⅱ. Related Work

In recent years, the development of autonomous 

vehicles has advanced amazingly because of 

remarkable research results coming from the domains 

of lidar, wireless communication, cameras, embedded 

systems, sensors, navigation, and ad hoc network 

technologies. The concept of autonomous cars started 

with “phantom autos” in the 1920s, where the car was 

controlled through a remote control device [25]. The 

Autonomous Land Vehicle, one of the earliest 

examples of self-managed cars, was created in the 

1980s by experts at Carnegie Mellon University’s 

NavLab [26]. Around the same period, Mercedes 

introduced the prometheus project, which achieved a 

vital result with the design and track lane markings 

[27]. In the 21st century, interest in autonomous cars 

has been fueled due to affordability and 

high-performance technologies. Major companies 

globally have welcomed them, but despite that broad 

acceptance, several challenges persist like sensor 

performance, which is prompting ongoing research and 

industry efforts [9]. Especially in environments with 

smoke, such as cigar smoke. When smoke is present 

inside the vehicle, sensors may not function optimally 

and posing risks to passengers’ safety [28]. Apart 

from the compromised performance of the sensors 

themselves, there’s also concern about the presence of 

harmful substances like CO emitted by smoke, which 

can endanger passengers’ health [29]. It does not only 

affect the functionality of the vehicle but also raises 

health hazards to individuals, including SHS and THS 

exposure [30]-[32].

There have been many studies involving different 

applications of detecting smoking using computer 

vision technology [33]. These applications include 

real-time vision based detection [34], smoking 

cessation system [35], detection system based on face 

analysis [36], smoking behavior observation from 

video [34], smoke sensing on smart phone [37], fire 

smoke recognition [38] and so on. There was some 

existing research where researchers tried to solve 

smoking problems by considering human action. The 

scheme proposed by Wu et al. [36] smoke detection 

systems attempted to automatically detect illegal 

behavior and transmit alarms within an indoor 

monitoring system. They used the YCbCr color system 

for skin recognition and analyzing from mouth to the 

detected site of smoking. Likewise, another human 

activity recognition framework used a deep Q-network 

with a distance-based reward rule and LSTM 

networks to classify motion data [39], while another 

approach used channel state information (CSI), 

translated CSI data into images, and used a 2D-CNN 

classifier to classify human engagement [40]. In [41], 

The authors highlighted a smoking detection method 

using two 9-axis IMUs, focusing on the 

elbow-to-wrist position, and predicted using a random 

forest model. Tang et al. [42] reported a two-layer 

ML method using wristwatch accelerometer data to 

detect smoking by integrating high-level smoking 

patterns with low-level time factors. 

Fig. 1. Overview of objects within the context of a car and different environmental problems such as holding small objects 
similar to cigarettes, and covering faces with a hand while using an inhaler in front of the mouth
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Considering the risks associated with smoking, 

researchers have explored not only cigars but also fire 

smoke using various models. Rentao et al. [43] 

enhanced YOLOv3-tiny for indoor image-based smoke 

detection, reducing ambient disturbances comparison 

to sensor-based strategies, and applied SVM for fire 

and cigar smoke detection [44]. The YOLOV8 offered 

feed-forward DNNs used for the classification and 

clustering of images based on similarity and detection 

of objects within a scene, which then led to an alarm 

[45]. Although the context of threshold value changes 

frequently which leads to a high false detection rate 

and poor applicability. Thus, despite its strength in 

real-time monitoring systems, YOLOv8 detection is 

inefficient for detecting cigar smoking, with little 

accuracy. Therefore, choosing a more fitting strategy 

that addresses past limitations and enhances accuracy 

in cigar smoking detection would be advisable. TL 

could be especially suitable for cigar smoking 

detection because it utilizes extensive previous 

research, minimizing the laborious task of generating a 

huge dataset.

In recent years, TL techniques have been 

successfully applied in image classification, pattern, 

and speech recognition mostly focused on medical 

issues [13]. Many CNN architectures have been 

developed to improve system performance using TL 

approaches, especially in object identification 

applications. Notable examples of these architectures 

are the well-known AlexNet, VGG16, and VGG19. 

Shaha et al. [46] compared the performance of the 

pre-trained VGG19 network with AlexNet, VGG16, and 

a hybrid CNN-SVM technique in order to fine-tune the 

network parameters using transfer learning for an 

image classification task. Few studies have looked 

closely at classifying illnesses, plants, crops, and 

smoke utilizing a variety of input photos and videos 

and different fine-tuning methodologies [47]-[51]. 

Macalisang et al. [33] used YOLOv3 for detecting 

smokers, while Zhang et al. [52] developed 

SmokingNet, a CNN model based on GoogleNet, for 

smoker detection. All things considered, TL techniques 

have been frequently employed to enhance predictions. 

In this field, there has been a noticeable lack of 

efficient models for detecting cigarette smoke through 

TL, particularly in the context of autonomous cars, 

despite a significant opportunity in this region.

Overall, our study advances the existing work and 

fills the gaps mentioned above about TL and detection 

systems. There is little research on passenger safety 

and well-being in driverless vehicles. Exposure to 

SHS and THS in cramped areas can harm passengers 

and might result in respiratory problems or even death 

from CO inhalation. However, by leveraging TL 

techniques, we can overcome these obstacles and 

create a prediction model, addressing previous 

limitations such as the confusion of object detection. 

For instance, objects like lipstick, walkie-talkies, pens, 

and chocolate may be inaccurately recognized, as well 

as complex movements related to hand and face. With 

the support of aforementioned causes in this paper, we 

proposed various VGG19 architecture following TL 

principles which can aim to detect the existence of 

cigarette smoke in vehicles from images by adjusting 

the number of layers to increase the model prediction 

accuracy. The dataset was created by gathering 

images from diverse sources with smoking images 

serving as input in the prediction model. After the 

refinement of the model, we enhanced the original 

VGG19 architecture by integrating fully connected 

layers, activation functions, and FE processes. It 

effectively distinguishes between smoking and 

non-smoking images of cigar smoke. We removed the 

Sigmoid classifier layer from the VGG19 model and 

replaced it with an SVM classifier, along with FE 

techniques. The resulting ‘6Conv SVM FE’ model 

achieved an impressive accuracy of 96.05%, 

outperforming other models. Finally, we evaluated the 

performance of the final model using a new dataset 

containing similar smoking-related images and also 

examined recent classification models including 

computational comparison.

Ⅲ. Background

Autonomous vehicles are at the forefront of modern 

transportation, driven by advancements in AI and 

sensor technologies. These vehicles are designed to 

improve road safety, optimize travel efficiency, and 

enhance passenger comfort. To achieve these goals, 

various sensors are integrated to monitor the external 

and internal environment of the vehicle. However, 

there are still challenges in addressing passenger 

health concerns, such as dyspnea or motion sickness, 
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especially in confined spaces where air quality can 

deteriorate due to pollutants like cigar smoke. Cigar 

smoke, containing harmful substances like CO and 

other toxic chemicals, poses serious risks not only to 

passengers but also to the vehicle’s sensor ecosystem. 

It can interfere with existing sensors by introducing 

particulates and odors that reduce their effectiveness 

over time. These challenges highlight the need for 

innovative and reliable smoke detection systems within 

the car environment. With the rise of DL and TL, CNNs 

have emerged as a powerful solution for image-based 

detection tasks. Unlike traditional sensors, which rely 

on detecting particulate matter or chemical changes, 

CNN-based systems leverage visual data to detect 

patterns and features associated with specific events, 

such as the presence of cigar smoke. In this work, we 

propose a novel approach utilizing the pre-trained 

VGG19 model to detect cigar smoke in smart vehicle 

environments. VGG19, originally trained on the 

ImageNet dataset, is fine-tuned using transfer learning 

to classify instances of cigar smoke. The key 

advantage of this method lies in its adaptability to 

complex features such as the varying textures, colors, 

and shapes of smoke, which traditional sensors often 

struggle to detect. This enables rapid and accurate 

detection, providing a more robust solution compared 

to existing sensor technologies.

While traditional smoke sensors are often proposed 

for such applications; however, their suitability for 

vehicle environments is questionable due to various 

technical and practical limitations. Key drawbacks of 

smoke sensors, particularly in the dynamic and 

confined environment of a smart car, include 

sensitivity to environmental conditions, false positives 

from non-smoke sources, high maintenance needs, and 

potential health hazards arising from chemical 

degradation. These limitations are compounded by 

regulatory hurdles and challenges related to passenger 

acceptance, as elaborated in Table 1.

Given the limitations of traditional smoke sensors, 

this study proposes a novel approach using DL to 

visually detect cigar smoke in smart vehicle 

environments. By leveraging CNNs and TL, the system 

can identify patterns and features unique to cigar 

smoke with remarkable precision. Visual-based 

detection offers several advantages over traditional 

methods. CNNs excel at recognizing complex textures, 

colors, and shapes, enabling accurate smoke detection 

even under challenging lighting or environmental 

conditions. Additionally, unlike conventional sensors, 

CNN-based systems require no physical cleaning or 

recalibration, significantly reducing maintenance 

demands and long-term operational costs. These 

systems are also highly adaptable, capable of 

identifying low-emission smoke, such as from 

e-cigarettes, which conventional smoke sensors often 

miss. Furthermore, their discreet design enhances 

passenger comfort by eliminating the intrusive 

presence of visible sensors. This shift to a 

visual-based detection system not only addresses the 

inherent drawbacks of traditional smoke sensors but 

also paves the way for a more efficient, scalable, and 

passenger-friendly solution in autonomous vehicle 

technology.

Ⅳ. Cigar Smoke Detection Approach

Limitation Explanation

Environmental 
Sensitivity

Sensors can fail to detect smoke accurately 
due to variations in temperature, humidity, 

and pressure inside the vehicle. This impacts 
their reliability, particularly in dynamic 

automotive environments[53].

Dust and 
Contamination 

Issues

Dust, debris, or residue from the car’s interior 
can accumulate on sensors, reducing their 
sensitivity and leading to false negatives or 

false alarms[54].

False Positives 
Due to External 

Factors

Ambient air contaminants like exhaust 
fumes, air fresheners, or even vapor from 
drinks may trigger false alarms, reducing 

trust in the system[55].

Limited Lifespan

Smoke sensors degrade over time due to 
environmental exposure, requiring frequent 

replacements, which increases maintenance 
costs[56].

Passenger 
Discomfort

Sensors installed in the vehicle’s cabin can 
intrude on passenger space and aesthetics, 
causing discomfort and potential resistance 

to adoption[57].

Regulatory and 
Legal Compliance

Smoke sensors may need certification for 
use in automotive environments, adding 

regulatory hurdles and potentially delaying 
deployment[58].

Table 1. Limitations of smoke sensors in smart car 
environments

The suggested framework aims to detect cigar 

smoke in the images captured within the autonomous 

driving environment. Subsequent actions will be taken 

depending on the attained results. Fig. 2, outlines the 

proposed methodical approach for this research. The 
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VGG19 network and different TL techniques were 

employed to train, validate, and test the image dataset. 

The strategy of this paper is described in the 

following:

4-1 Tobacco Smoke Dataset

In this experiment, a vehicle environment-based 

image dataset of cigar smoking and non-smoking is 

used, which consists of 7,535 images including 

confusing objects such as lipstick, walkie-talkies, 

pens, and chocolate, as well as complex actions such 

as holding the phone vertically, drinking from a glass 

or bottle, sneezing with a folded hand, and covering 

faces with a hand while using an inhaler in front of the 

mouth. This dataset was collected from various open 

source web platforms [21]-[24]. A few dataset 

samples with labels are displayed in Fig. 3. We did not 

perform extensive image pre-processing to avoid any 

extra computational cost, which consequently slowed 

down the detecting process. The only image 

pre-processing that we have done is the resizing of 

the images to fit in the VGG19 network. On the other 

hand, image augmentation was employed to provide us 

with extra photos to train our model and prevent 

overfitting. We applied scaling, rotation, mirroring, 

flipping, and cropping techniques. We scaled the image 

by 0.2, rotated it at 50◦, then translated it horizontally 

or vertically by 0.2. We also used shear-based 

transformation up to a factor of 0.2.

4-2 Convolutional Neural Network

Formally, according to [59] in our research, we 

employed a supervised learning approach where a 

training dataset consists of images along with their 

corresponding labels. The model learns patterns from 

these images using a set of parameters, which we 

iteratively updated through an optimization process to 

improve classification accuracy. We utilized a loss 

function to measure the difference between the 

model's predictions and the actual labels. This function 

guided the learning process by evaluating how well the 

predicted category aligned with the true category of 

each image.

In our study, we incorporated convolutional layers 

as the primary feature extraction mechanism. These 

layers perform feature extraction by scanning the 

input image with small filters known as kernels. Each 

filter moves across the image in a structured manner, 

detecting essential patterns such as edges, textures, 

and shapes. The result of this operation is a feature 

Fig. 2. Comprehensive overview of the proposed approach for smoke detection in a smart car environment, highlighting the 
integration of preprocessing, feature extraction, Fine-tuning, model training, and Prediction

Fig. 3. Representative images from the dataset, showcasing examples of cigar smoking and non-smoking scenarios and 
preprocessing used for training and evaluation in the smoke detection framework for smart car environments
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map, which captures crucial characteristics necessary 

for classification. Fig. 4, illustrates this process, where 

an image undergoes convolution operations to 

generate a feature map that highlights important 

regions.

To enhance the robustness of our model, we applied 

multiple filters in convolutional layers to extract 

different aspects of an image. Each filter learned 

distinct characteristics, enabling the model to identify 

complex patterns when combined. The effectiveness of 

our CNN framework was largely dependent on the 

learned filter weights, which we adjusted iteratively 

using backpropagation. To further improve 

computational efficiency and feature selection, we 

incorporated pooling layers following the convolutional 

layers. We specifically employed max pooling to select 

the most prominent feature within a region, reducing 

the size of the feature map while retaining key 

information. This helped our model become more 

invariant to small transformations in the image, such as 

scaling and rotation. Fig. 5, demonstrates how we 

applied convolutional filters to extract features from 

input images. The transformation of pixel information 

into structured feature maps was essential for our 

classification process. Following feature extraction, we 

processed the extracted features through fully 

connected layers, which interpreted and classified the 

learned representations. These layers mapped the 

feature maps into a prediction space, ultimately 

determining the category to which each input image 

belonged. The final classification decision was based 

on probability scores assigned to each possible class. 

In our research, we relied on iterative updates to filter 

weights, ensuring they effectively captured the 

distinguishing characteristics of each class. To prevent 

issues such as vanishing gradients, we adopted a 

proper weight initialization strategy. Instead of 

initializing all weights to zero, we sampled them from a 

predefined distribution to facilitate effective learning. 

This approach contributed to the stability and accuracy 

of our CNN-based classification model in our 

approach.

4-3 Transfer Learning

As stated by [60], Transfer Learning can be used in 

image classification sectors with the following 

parameters: T : Target, S : Source, m, n 

(consecutively: Target and Source dataset capacity), ϕ
(.) : Target function, F : Attribute space, D : Domain, P 

(X) : Probability distribution, and Learning extracts: X 

= {x1, x2, . . . , xn} ∈F, Υ: Label extracts, Task : K = 

{n, Υ, ϕ(.)}, n ≫m. An image domain, D, is defined as 

having two components: an attribute space F, and a 

probability distribution P (X): 

                                                 (1)

For  a  source  domain,  S,  the  dataset  is  XS  = 

{xS1, xS2, . . . , xSn} ∈ FS. The source domain data 

can be denoted by:

  〈 〉〈 〉 〈 〉        (2)

where xSi ∈ FS is the data example, and ySi ∈ ΥS 

is the appropriate class label. T, the target domain can 

be indicated by:

 〈 〉〈 〉〈 〉      (3)

where xT i ∈ FT is an instance of data, and yT i ∈ 

Fig. 4. Process of Convolution illustrating the three key steps: input representation, filtering through convolutional kernels, 
and generating the corresponding feature map to capture essential patterns for further processing
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ΥT is the conforming class label. A task, K, consists of 

two elements such as attribute space, Υ, and an target 

function, ϕ(.):

                                                 (4)

1) Explanation

As shown in Fig. 6, DS represents datasets such as 

ImageNet or Cigarette smoke. KS is defined as KS = {γ

S, ϕS(·)}, where γS is the source attribute space, and ϕ
S(·) is the source predictive function that maps a new 

image feature xi to its label yi. DT represents new 

datasets in this research. KT is defined as KT = {γT , 

ϕT (·)}, where γT is the target attribute space, and ϕT 

(·) is the target predictive function. The goal is to 

enhance ϕT (·) for the DT using knowledge from the 

DS and its predictive function ϕS(·). The TL scheme is 

presented in algorithm 1.

4-4 VGG19 Architectures

The verification of cigar smoke instances inside 

driverless cars is crucial for passengers, especially 

those with dyspnea or motion sickness, to ensure a 

comfortable travel experience. In this research, a 

classification problem as cigar smoking or not is 

solved. Additionally, it is intended to classify the 

smoke using FE techniques with high accuracy and to 

investigate the adoption of new modalities using DL 

models in smoke image processing. To offer a solution 

to this obstacle, three new architectures with 3, 4, and 

6 layers were suggested by modifying the CNN-based 

VGG19 architecture. In addition, the SVM classifier 

and FE are also used for each architecture. The CNN 

Fig. 5. Feature extraction process using convolutional filters, applied to images from the dataset, highlighting the pixels 
transformation of input data into meaningful feature maps for analysis

Fig. 6. Illustration of the Transfer Learning Process, highlighting the knowledge transfer between source and target 
domains
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architecture finetuned using the original VGG19 

architecture [61], with an input image size of 

224×224. Three new models were put out by varying 

the number of convolution layers. To find out how 

these adjustments impact classification outcomes, each 

model was tested using both the SVM and sigmoid 

classifier as in the original VGG19. The accuracy of 

the model with six convolution layers appeared to be 

the most promising. The architecture with 20 

convolution layers in VGG19, consists of 2 layers with 

64, 128 filters, 256, 512 filters in 4 layers, and an 

additional layer with 512 filters. Each convolution 

layer uses 3×3 filters, padding of 1, and the ReLU 

activation function. Architecture with 3 or 4 

convolution layers has layers with 3×3 filters, 

including 3 layers with 64 filters, 2 layers with 128 

filters, and 4 layers with 256 filters. After that 

modified architecture includes an extra convolution 

layer including more than 4 with 512 filters, making it 

21 layers in total. FE processes are also applied to 

mapping the feature similarity and reduce the 

computational cost, retain valuable features, and 

enhance classification accuracy, the FE process is 

represented in Fig. 7. Max-pooling layers with a 2×2 

filter size follow each set of convolution and ReLU 

layers in both models. The ReLU activation function 

improves learning speed and classification accuracy by 

addressing the vanishing gradient problem. The most 

effective architecture was found the 6Conv_VGG19_FE 

with 6 convolution layers. The layers and parameter 

values of the 6Conv_VGG19_FE model are given in 

Fig. 8.

Ⅴ. Results

In this study, the performances of the six proposed 

models we evaluated with the collected cigar smoking 

image dataset, and the best model was also examined 

with a similar dataset from Mendeley [24]. All 

methods were implemented on the PyCharm platform 

using PyTorch. While experimenting with the results, a 

computer with technical details of an Intel (R) 

Core(TM)i9-10900CPU, 2.80GHz, 64GB of RAM, and 

an NVIDIA GeForce RTX 3070 (×2) GPU was applied 

for training, testing, and evaluation processes. In all 

experiments, 32 batch sizes, Stochastic Gradient 

Descent with Momentum (SGDM) optimizer algorithm, 

0.5 decay (drop factor), and 5 drop period parameters 

were used with a learning rate of 10e-4. Each model 

was run with 30~150 epochs by allocating 70% of 

training, 15% for validation, and 15% for testing in the 

Fig. 7. Visualization of the proposed feature extraction approach, showcasing convolutional, frozen layers, and feature 
extraction mechanisms for TL
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image dataset. Training data was different from 

validation and testing data.

5-1 Performance Metrics

To assess the results of the six models claimed in 

this analysis, we generated used an agreed confusion 

matrix of each model. Performances are measured 

using the evaluation metrics Accuracy (ACC), 

Specificity (SPE), Sensitivity (SEN), Precision (PRE), 

and f1 Score (F1SCO) [62]. In metrics, TP, FP, FN, 

and TN stand for true positive (correctly confirmed 

pattern), false positive (falsely confirmed exemplar), 

false negative (falsely rejected specimen), true 

negative (correctly rejected pattern), and 

correspondingly.

 

                    (5)

 

                                  (6)

 

                                  (7)

Pr

                                  (8)

 
                     (9)

5-2 Outcomes with Cigar Smoke Dataset

At first, the suggested techniques were examined 

using cigar smoke dataset and the predetermined 

experimental parameters. The outcomes are shown in 

Table II and Table III. According to Table II, the 3 

convolution layer method (3Conv_VGG19) acted poorly 

when used with both Sigmoid and SVM classifiers. The 

greatest results were obtained in ACC, SEN, SPE, PRE, 

and F1SCO metrics with a success rate above 96% 

when our proposed model with 6 convolution layers 

was used in conjunction with the SVM classifier 

incorporating the FE process (6Conv_VGG19_FE). 

When combined with the Sigmoid classifier, the 

suggested model with the same convolution layers 

demonstrated performance over 90% as well seen in 

Table III. In the experiment, it is found that the 

6Conv_VGG19_FE and 6Conv_VGG19 models obtained 

by increasing the convolutional layer increased the 

success basically after merging FE techniques 

impacted a lot. Additionally, similar experimental 

inquiries have been conducted for architectures with 7 

or more layers (maximum = 12) by expanding the 

Fig. 8. The most effective proposed fine-tuned method, incorporating convolutional layers with ReLU activation, combined 
transfer learning techniques, an additional six-layer convolutional block for enhanced feature extraction, max pooling 
for dimensionality reduction, and SVM for classification, achieving optimal performance in feature learning and 
prediction
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layers. Since these techniques failed to produce better 

results, they and their specifics were left out of this 

work. 6Conv_VGG19_FE recognized the properties of 

cigar smoke images.

Architecture ACC SEN SPE PRE F1SCO

VGG19_Default 0.7968 0.7618 0.6968 0.6502 0.6721

3Conv_VGG19 0.6561 0.5346 0.5173 0.5435 0.6873

4Conv_VGG19 0.7765 0.8127 0.3255 0.7656 0.7789

6Conv_VGG19_FE 0.9605 0.9607 0.9599 0.9644 0.9622

Table 2. Result of classifier: SVM

Architecture ACC SEN SPE PRE F1SCO

VGG19_Default 0.9031 0.8187  0.8871  0.7042 0.7704

3Conv_VGG19 0.5353 0.4934 0.7296 0.5153 0.6786

4Conv_VGG19 0.6534 0.5934 0.6296 0.6153 0.6416

6Conv_VGG19_FE 0.9066 0.9319 0.8997 0.8229 0.8699

Table 3. Result of classifier: Sigmoid

It was discovered to be a highly efficient model on 

our dataset due to its excellent classification rates, 

which draw on a highly successful feature extraction 

formula using transfer learning tuning principles. The 

model excels at identifying subtle features and 

patterns unique to cigar smoke particles, such as 

texture, density, and dispersion patterns. By focusing 

on these specific characteristics, 6Conv_VGG19_FE 

enhances the accuracy of smoke detection and 

classification. The visual comparison of the SVM 

classifier metric values in Table II is shown in Fig. 9. 

5-3 Model Performance Evaluation with New Dataset

The 6Conv_VGG19_FE model was tested in an 

identical experimental setup on the smoker vs. 

non-smoker dataset, which is available as open source 

on Mendeley. Pictures of people who smoke cigars and 

people who don’t, with different resolutions and 

actions, were used [24]. The results are listed in 

Table IV. We utilized our best model to assess this. 

new dataset. The results of the 6Conv_VGG19_FE 

model are presented with the following evaluation 

metrics: ACC, SEN, SPE, PRE, and F1SCO. As seen in 

Table IV, the evaluation metric outcomes for the 

6Conv_VGG19_FE model on this dataset are lower 

than on our original dataset. It was observed that the 

performance decreased due to the low number of 

images. Nevertheless, the 6Conv_VGG19_FE model, 

which, among the strategies suggested, is the most 

effective, still achieved a success rate of over 93%.

Architecture ACC SEN SPE PRE F1SCO

6Conv_VGG19_FE 0.9421 0.9428 0.9668 0.9493 0.9429

VGG19 0.9246 0.8351 0.8863 0.8751 0.9288

Table 4. Result of finetuned & default

5-4 Comparison with Other SOTA Models

Our secondary dataset, which includes pictures of 

smoke and nonsmoke, has never been used in any 

other study. It is therefore impossible to draw a fair 

comparison. As a result, we attempted to compare the 

outcomes by using our dataset with a few current 

categorization methods. Here, we analyzed (see Table 

V) multiple DL classification architectures, including 

Reg- Net, MobileNetV3, EfficientNet, ResNeSt, 

MLP-Mixer, and our best model 6Conv_VGG19_FE, 

using key performance metrics such as accuracy, 

sensitivity, specificity, precision, and F1-Score. The 

6Conv_VGG19_FE method appeared as the best 

performer, boasting the highest accuracy (96.05%), 

sensitivity (0.9607), specificity (0.9599), precision 

(0.9644), and F1-Score (0.9622). MobileNetV3 also 

demonstrated strong performance with a notable 

accuracy of 94.62% and high precision (0.9625). While 

RegNet and EfficientNet showed respectable results, 

EfficientNet’s lower specificity (0.6768) could be a 

concern. ResNeSt presented balanced but lower 

overall metrics, and MLP-Mixer pushed back 

significantly behind. Thus, 6Conv_VGG19_FE’s 

superior and comprehensive execution makes it the 

most reliable and efficient choice for our prediction 

system, ensuring strong and accurate outcomes. This 

performance consistency across various metrics 

Architecture ACC SEN SPE PRE F1SCO

RegNet 93.67 0.9273 0.9469 0.9503 0.9387

MobileNetV3 94.62 0.9333 0.9502 0.9625 0.9477

EfficientNet 93.15 0.9088 0.6768 0.9543 0.9311

ResNeSt 91.61 0.9273 0.9038 0.9134 0.9203

MLP-Mixer 79.89 0.7697 0.8308 0.8328 0.8001

6Conv_VGG19_FE 96.05 0.9607 0.9599 0.9644 0.9622

Table 5. Comparison with other recent classification 
methods. Acc, Unit: -%



Enhancing Vision-Based Cigarette Smoke Detection in Smart Vehicles by Transfer Learning

1053 http://www.dcs.or.kr

further highlights the robustness of our proposed 

approach. Our finding values are laid out in Table V.

5-5 Computational Complexity

In this article, we evaluated models in terms of 

classification performance, computational complexity, 

and inference speed on the cigar-smoking data set 

with GFLOPs. The summary of results is shown in 

Table VI. Our best performing model was the edited 

VGG19 model 6Conv_VGG19_FE. With an inference 

speed of 2.3 milliseconds per image, it came in at 1, 

and with a compute requirement of 17.05 GFLOPs, the 

lowest 6. Therefore, it is highly suitable and efficient 

for prediction. MobileNetV3 had the following results: 

58.6 GFLOPs with 4.8 milliseconds for inference on 

the device and RegNet had the following results: 20.3 

GFLOPs with 4.6 milliseconds for inference on the 

device. Speed and flop estimation with EfficientNet, 

ResNeSt, and MLP-Mixer performed slower speeds 

(6.7 (EfficientNet), 2.5 (ResNeSt), and 3.2 

(MLP-Mixer) milliseconds) and higher GFLOPs (40 

(EfficientNet), 53.9 (ResNeSt), and 69 (MLP-Mixer)). 

Fig. 9. Graphical Comparison of evaluation acquired by 
SVM and FE

Ⅵ. Conclusion

In this study, we provided an innovative artificial 

intelligence (AI) monitoring model intended to improve 

the management of cigar smoke emissions in smart 

cars. This method improves travel experience and se-

 nsors performance in these vehicles by focusing 

specifically on passengers who have respiratory issues 

and motion sickness that is exacerbated by the 

presence of carbon monoxide, especially in enclosed 

environments. Moreover, this research has provided a 

dataset for not only cigar smoker detection problems 

in car environments but also some confusing objects 

such as lipstick, walkie-talkies, pens, and chocolate, 

as well as complex actions such as holding the phone 

vertically, drinking from a glass or bottle, sneezing 

with a folded hand, and so on, to help future research 

on this AI-based cigar smoker detection system. This 

dataset consists of two classes: cigar smoking and not 

smoking. Further, to classify the instances of cigar 

smoke in car surroundings, we proposed a TL-founded 

technique using the pre-trained VGG19 model 

including an SVM-based FE approach. In this model, 

we also tried to consider previous research limitations. 

The effectiveness of the proposed method for 

predicting cigar smoke and non-smoke has been 

evaluated and compared with other recent CNN 

classification architectures using different metrics. 

The proposed TL-based 6Conv_VGG19_FE model 

achieved an accuracy of 96.05%, with precision and 

recall rates of 96.44% and 96.07%, respectively, in 

predicting smoking and non-smoking behavior from 

images using a challenging and diverse dataset. In 

comparison, other architectures such as RegNet, 

MobileNetV3, and EfficientNet achieved lower 

accuracies of 93.67%, 94.62%, and 93.15%, 

respectively, while models like ResNeSt and 

MLP-Mixer performed even lower at 91.61% and 

79.89%. These results confirm the superior 

performance of the proposed method. Although we 

evaluated the proposed method on different image 

datasets, we also obtained promising results in all 

Method
Reg

Net

Mobile

NetV3

Efficient

Net

Res

NeSt
MLP Mixer 6C_VGG19_FE

GFLOPS 20.3 58.6 40 53.9 69 17.5

Ins 4.6 4.8 6.7 2.5 3.2 2.3

Table 6. Computational complexity comparison. Inference Speed (INS), Unit: Milisecond (MS/INS)
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cases. In the years to come, we intend to incorporate 

car accident likelihood and predictions based on 

real-time camera data. This system will employ map 

indicators or an application to alert people and 

autonomous cars to possible threats.
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