
Copyright ⓒ 2024 The Digital Contents Society 2889 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 25, No. 10, pp. 2889-2899, Oct. 2024

은닉 마르코프 모델 기반 고속 암호화 네트워크 트래픽 탐지 시스템

염 녕1·추 영 열2*

1동명대학교 컴퓨터미디어공학과 석사과정
2동명대학교 컴퓨터공학과 교수

Fast Encrypted Network Traffic Detection System Based on
Hidden Markov Models
Ning Yan1 · Young-Yeol Choo2*

1Master’s Course, Dept. of Computer and Media Engineering, Tongmyong University, Busan 48520, Korea
2Professor, Dept. of Computer Engineering, Tongmyong University, Busan 48520, Korea

[요 약]

순환신경망기반의 딥 패킷탐지 방법은 원시 패킷에서 특징을 자동으로 추출하고 응용 프로토콜을 식별할 수 있지만, 일정한 정

확도를 유지하려면 많은 양의 훈련 데이터와 계산 리소스가 필요하고, 모델의 해석이 좋지 않아 실제 환경에 적용하기가 매우 어

렵다. 이 문제를 해결하기 위해 히든 마르코프 모델을 기반으로 한 네트워크 트래픽 탐지 알고리즘을 제안한다. 암호화된 트래픽

을 게놈 시퀀스로 간주하여 정상적인 네트워크 동작을 모델링하고 이상 징후를 탐지하는 새로운 알고리즘이 제안되어 암호화된

악성 트래픽을 효과적으로 식별할 수 있다. 제안한 시스템은 기존 알고리즘과 비교하여 95% 이상의 정확도 또한 메타데이터를 최

대 MTU까지 패딩하고 난독화되거나 유효하지 않은 패킷을 삽입함으로써 패딩이 큰 부분 을 초과하더라도 50% 이상의 정확도를

보장 유지하며 난독화에 강하다는 것을 보였다. 본 연구는 암호화 트래픽 탐지에 대한 새로운 접근 방식을 다양한 분야에서도 적

용될 것이다.

[Abstract]

Deep packet detection methods based on recurrent neural networks can automatically extract features from raw packets and
identify application protocols. However, they require a large amount of training data and computational resources to maintain
accuracy, and the interpretability of the model is poor, making its real-world applications challenging. To address this issue, we
propose a network traffic detection algorithm based on hidden Markov models. By treating encrypted traffic as genome sequences,
this new algorithm models normal network behavior and detects anomalies, effectively identifying encrypted malicious traffic. The
proposed system achieves over 95% accuracy compared to existing algorithms. Additionally, it is robust against obfuscation
techniques, such as padding metadata up to the maximum MTU and inserting obfuscated or invalid packets, maintaining accuracy
above 50% even when padding occupies a significant portion. This research offers a novel approach to encrypted traffic detection,
which is applicable across various fields.

색인어 : 암호화 기술, 보안소켓계층/전송계층보안, 심층 패킷 검사, 숨겨진 마르코프 모델, 네트워크 기술

Keyword : Encryption Technology, SSL/TLS, Deep Packet Inspection, Hidden Markov Model, Network Technologies

http://dx.doi.org/10.9728/dcs.2024.25.10.2889
This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 11 September 2024; Revised 21 October 2024
Accepted 21 October 2024

*Corresponding Author; Young-Yeol Choo

Tel:
E-mail: yychoo@tu.ac.kr

※ 개인정보 표시제한

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2024.25.10.2889&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5

디지털콘텐츠학회논문지(J. DCS) Vol. 25, No. 10, pp. 2889-2899, Oct. 2024

http://dx.doi.org/10.9728/dcs.2024.25.10.2889 2890

Ⅰ. Introduction

Encryption technology has boosted online security,

but also created opportunities for malicious actors like

advanced persistent threats (APTs)[1] to exploit

encrypted traffic. The rise of APT attacks and

limitations of traditional methods like deep packet

inspection have highlighted the need for new detection

techniques. Machine learning, particularly hidden

markov models (HMMs), shows promise in this area.

Inspired by genome sequence comparison, HMMs can

model statistical characteristics of encrypted traffic to

detect deviations from normal patterns, potentially

revealing APT activity.

While hypertext transfer protocol secure (HTTPS) is

the most common encryption protocol, it's also

frequently used in phishing attacks and by botnets like

Mirai[2]. This, along with the fact that botnets are

evolving to be less predictable[3], makes it difficult to

rely on specific protocol analysis for detection.

Traditional security software struggles to keep up

with new virus strains and encrypting malware. This

leaves government agencies and other critical assets

vulnerable. There's a clear need for dynamic detection

of malicious encrypted software. Existing research on

network traffic detection mostly focuses on

unencrypted traffic, which differs significantly from

encrypted traffic due to changes in request headers,

obfuscation techniques (SOCKS5 within HTTPS

tunnels)[4], and multiple encryption layers.

Machine learning methods like C4.5[5], k-means,

and support vector machine (SVM)[6] have been used

for encrypted traffic detection, but they often rely on

accurate data labeling. Semi-supervised learning

approaches like clustering and HMMs offer

alternatives, but still face challenges in identifying

different types of malware. Some studies have

achieved impressive results, like the random forest

algorithm by Anderson will be show in this paper 4-2

part. But it only distinguishes between malware and

benign traffic, not different malware types.

This paper proposes an HMM-based approach for

detecting encrypted traffic of packet-swapped

malware, drawing inspiration from gene sequence

detection in biology. The approach aims to address the

challenges of detecting evolving malware and

achieving high accuracy in real-world data. It also

leverages Go and the AVX512 instruction set for

improved efficiency[7],[8].

Ⅱ. Related works

2-1 Hidden Markov Model

Hidden markov model[9] is a statistical model for

describing a Markov process with unknown

parameters. Its core principles are: (1) the next state

depends only on the current state, and (2) the output

depends only on the current state. Originally used in

biological sequence analysis, HMM has been applied in

various fields like speech recognition and text

classification.

In a simple example with letters a and b, HMM starts

with an initial state, transitions to new states based on

probabilities, and emits a symbol (like the letter “a”)

based on emission probabilities associated with the

current state. This process repeats until a final state,

resulting in a sequence of hidden states and observed

symbols.

The “hidden” in HMM refers to the fact that only the

symbol sequence is directly observable, while the

hidden state sequence follows a first-order Markov

chain.

2-2 Profile HMM

As shown in Fig. 1, Profile HMM[10] extends HMM

with two states: Insert, allowing insertion of states

between any two states, and Delete, enabling state

deletion.

Profile hidden markov models (Profile HMMs)

enhance traditional HMMs by incorporating Insert and

Delete states to better handle sequence variations like

insertions or deletions often found in biological or

network data. Unlike HMMs, Profile HMMs leverage

multiple sequence alignments to record positional

information of states, enabling them to model specific

locations where insertions or deletions are likely to

occur. Profile HMMs offer two key advantages over

HMMs: utilizing positional information of observed

sequences and allowing null transitions to match

sequences with insertions or deletions.

In Fig. 1, Insert (I) states allow symbol insertion

Fast Encrypted Network Traffic Detection System Based on Hidden Markov Models

2891 http://www.dcs.or.kr

before Match (M) or Delete (D) states, while Delete

(D) states allow symbol deletion. The model transitions

between states based on symbol matches and

mismatches.

This paper applies profile HMMs to network

security by constructing encrypted traffic as gene

sequences and using homologous gene search

algorithms to detect malicious attacks within the

encrypted traffic.

Fig. 1. Overview of the profile HMM

2-3 Problems with Encrypted Traffic Identification using

HMM

Existing HMM-based methods for encrypted traffic

analysis often fall short due to their reliance on

simplified models and limited state representation. To

address this, we propose a series of enhancements:

1) Introduce a two-dimensional feature combining

packet length and message type during the handshake

process to expand the number of Markov states.

Incorporate a second-order Markov model to capture

more complex dependencies in traffic patterns.

2) Utilize packet sizes during data transmission to

construct an HMM model, refining emission

probabilities by considering the correlation between

adjacent packet sizes.

These enhancements aim to improve the accuracy

and effectiveness of HMM-based encrypted traffic

analysis by providing a more comprehensive and

discriminative model.

2-4 The Markov Chain Model based on the Handshaking

Process

The secure sockets layer/transport layer security

(SSL/TLS)[11] handshake process, a series of

message exchanges to establish a secure connection,

can be modeled as a Markov chain. Each state

represents a handshake stage, with transitions

governed by protocol rules, and observed message

features as emissions. This approach is protocol

agnostic, adaptable to various SSL/TLS versions, and

feature-rich, capturing diverse application behaviors.

As show in Fig. 2 and Table 1, our HMMS structured

the message content of the protocol according to the

different intervals of the TLS handshake. Shows the

contents of the protocol messages at different times of

the TLS handshake. This model can be used for

encrypted traffic classification, anomaly detection, and

protocol fingerprinting. However, challenges like state

space complexity and adversarial evasion need to be

addressed.

Fig. 2. Markov chain model based on and shaking
process

Plain Text SSL/TLS Handshake Characteristics

20 Change Cipher Spec

21 Alert

22:02 Server Hello

22:11 Certificate

22:12 Server Key Exchange

22:13 Certificate Request

22:14 Server Hello Done

22:17 Encrypted Handshake Message

22:18 New Session Ticket

22:20 Finished

23 Application Data

Table 1. Markov chain model based on handshaking
process

디지털콘텐츠학회논문지(J. DCS) Vol. 25, No. 10, pp. 2889-2899, Oct. 2024

http://dx.doi.org/10.9728/dcs.2024.25.10.2889 2892

2-5 The profile HMM Employed in Conjunction with

Encrypted Traffic

Inspired by Profile HMMs, this section integrates

packet-level features into a model for encrypted

traffic analysis. Both traffic sequences and gene

sequences evolve over time, and key subsequence

within them can reveal their overall classification.

Fig. 3. Markov chain model implementation example

Similar to how core gene fragments in homologous

gene sequences can be traced back to their gene

families, key subsequence in malicious traffic retain

attack characteristics. This paper aims to analyze

these “key genes” to detect malicious attacks.

To account for packet sequence variations within

the same protocol, the model includes Insert and

Delete states for each position. Insert states represent

duplicate or retransmitted packets, while Delete states

signify packet loss.

Fig. 4. Markov chain state characteristics diversification

Each chain in the Profile HMM is associated with a

specific packet, and states emit symbols with

position-specific probability distributions. Fig. 3 and

Fig. 4 illustrate the routine modeling process for

encrypted traffic detection based on profile hidden

Markov models (HMMs). Slicing and dicing the

communication process during a TLS handshake allows

us to understand exactly what is going on at each step

of the TLS communication process. This removes

unnecessary packets thus retaining exactly the data

we need.

Ⅲ. HMM based Flow Processing

3-1 Core Work

The objective of this study is to enhance the hidden

markov model based on the data transmission process

as show in Fig. 5. ADPT is a packet length of

application data. A DPT Represents the length of an

application packet and can be viewed as a state in the

data transmission process. state transfer Represents

the process of transferring the packet length from one

state to another. Launch probability Optimization It

may refer to some optimization algorithm that adjusts

the probability of state transfer to better fit the actual

network traffic data.

Fig. 5. Improvement of HMM model based on data
transmission process

Malicious traffic often has a distinct temporal

signature, which attackers try to disguise through

delayed transmission and data obfuscation[12].

However, these tactics also introduce overheads that

create hidden patterns, exploitable for detection.

We capture and filter traffic to obtain packet

sequences, then symbolize them to reduce observable

states in the HMM, enhancing robustness. This allows

us to create a model with a single gene sequence

representing all sequences from the same malicious

sample. Multiple sequences can be used as training

samples for better efficacy. Detection involves

transforming the test sample into a symbolic sequence

and comparing it against known sequences.

Fast Encrypted Network Traffic Detection System Based on Hidden Markov Models

2893 http://www.dcs.or.kr

3-2 HMM Launch Probability Optimization: A Specific

Description

If a detection model performs whole-sequence

matching on pre-established malicious samples and

sequences awaiting detection, it may misidentify

non-key subsequence and miss actual key

subsequence, making it ineffective against attacks with

obfuscated packets. However, the proposed model

segments the sequence into individual subsequence,

allowing it to match key subsequence regardless of the

order in which the attacker sends packets.

This enables detection of malicious samples despite

obfuscation:

  ↓ (1)

Where “B” is the number of Markov states and “b”

and “im” are the packet length and message type of

the handshake process, respectively.

The probability of a successful launch has been

enhanced:

  ↓↓ (2)

Specifically:

↓↓  ↓↓ ↓ (3)

The probability of a successful firing is enhanced

when the last observed feature state is ↓ and

the hidden state is ↓. This probability is dependent

on the value of the observation feature.

3-3 Block Diagram of the Overall System Structure

Before training each HMM, the training set

undergoes multiple order alignment, aligning

homologous parts of sequences by inserting special

symbols. This facilitates the discovery of common

subset sequences, making the model easier to train

and enhancing the hit rate of analogous subsequence,

preventing the model from being trapped in local

optima. The full structure is as show in Fig. 6.

① Preprocessing: Capture SSL/TLS traffic: Collect a

large amount of SSL/TLS traffic data. Traffic Statistics

and Feature Extraction: Perform statistical analysis of

the captured traffic to extract attributes that

characterize the traffic, such as packet length, interval

time, protocol type, etc.

② Multi-order Alignment: Before training each

HMM model, the sequences in the training set are

multi-order aligned. By inserting special symbols, the

homologous parts of different sequences are aligned

so that common subsequences can be found.

Significance of Alignment: The purpose of alignment is

to improve the efficiency and accuracy of model

training. Through the alignment, it can make the model

easier to learn the commonality between sequences,

so as to improve the hit rate of similar subsequences

and avoid the model falling into the local optimum.

③ Model Training: Multiple HMM models: For each

feature subset, train one HMM model, which can

effectively model sequence data, capturing transfer

probabilities and firing probabilities between

sequences.

④ Combining Markov models: In addition to HMM

models, Markov models are also combined. Markov

models capture the transfer relationships between

neighboring states in a sequence.

⑤ Multiple classifiers: Multiple trained HMM models

and Markov models are used as base classifiers.

⑥ Weighted Integration: Integrate the base

classifiers by assigning different weights to each of

them to form a weighted integrated classifier.

⑦ Final Classification: The weighted integrated

classifier classifies the new test samples and outputs

the final classification result.

Fig. 6. Overall architecture of weighted ensemble
classifier

디지털콘텐츠학회논문지(J. DCS) Vol. 25, No. 10, pp. 2889-2899, Oct. 2024

http://dx.doi.org/10.9728/dcs.2024.25.10.2889 2894

3-4 Data Preparation

This experiment employs the open-source dataset

USTC-TFC2016[12] and SSL Blacklist[11], in

addition to traffic obtained following authorization on a

public network to assess the efficacy of the model.

The USTC-TFC2016 dataset, created by the

University of Science and Technology of China, is a

benchmark for encrypted traffic classification and

analysis. It contains real-world encrypted traffic

traces with labeled application types, making it

suitable for supervised learning. This dataset captures

the nuances of real-world traffic, including variations

in packet sizes, timings, and content. However, it's

important to note that encrypted traffic patterns are

dynamic and adversaries can use evasion techniques,

highlighting the need for continuous model updates and

adaptation.

The SSL Blacklist (SSL BL) dataset collects

malicious SSL-related certificates, domain names, and

other data. In this study, Suricata's rule sets and the

SSL BL dataset are used to identify malware, resulting

in 1,605 malicious samples across 16 malware families

and as show in Table 2.

Malware Family Sample Size
Sample Flow

Data Volume

IcedID 201 8251

CobInt 33 4687

Gozi 185 7671

OrcusRAT 153 6972

Adwind 52 4937

AsyncRAT 47 5640

Ostap 137 6839

TA505 38 4468

FindPOS 177 7490

TinyNuke 115 6003

ServHelper 25 3528

PsiXBot 94 5586

AZORult 61 5309

PredatorStealer 103 7195

NetWire 47 4115

PandaZeus 137 6898

Table 2. Virus family schematic

3-5 Data Processing and Modelling

To analyze malware behavior, packet data is

symbolized into a matchable sequence. First, malicious

sample data is serialized using MapReduce to

aggregate encrypted traffic within a timeframe.

For each packet, its size and direction are extracted

(3000 possibilities). To avoid excessive symbols and

poor model performance, a grouped symbolization

approach divides possibilities into 3000/capacity

groups.

After symbolizing individual packets, all packets are

processed. Data streams exceeding a set length are

truncated, while shorter ones are padded. This

completes preprocessing as show in Fig. 7.

Fig. 7. The encrypted traffic sequence symbolization
algorithm

In the algorithm, Symbolize (p→length) signifies

that, in accordance with the capacity that has been

established, the packet of a given length is

transformed into the symbol of the corresponding

group. In the algorithm, Symbolize (p→length) signifies

the conversion of a packet of length into a symbol of

the corresponding group, contingent upon the capacity

that has been set. To illustrate, a packet of one byte in

size is assigned to the range +0, +1, and so forth.

The capacity group is designated as +1, +2, +3,

and so forth, with the group identifier assigned in the

order of aa, ab, ac, and so on. In the event that the

capacity is equal to 10, the corresponding group is

designated as “fl.” This implies that the packet has

successfully traversed the specified group.

Conversely, if the capacity is equal to 10, the

corresponding packet is designated as “fl.” This

signifies that the packet has been successfully mapped

Fast Encrypted Network Traffic Detection System Based on Hidden Markov Models

2895 http://www.dcs.or.kr

to the character “fl” following the process of

symbolization.

3-6 AVX512 Accelerated Go Reasoning

Advanced vector extensions 512 (AVX512), Intel's

latest single instrument multiple data (SIMD)

instruction set, can process 512 bits of data per cycle,

offering potential acceleration for vector computations

in Go-based deep learning systems. However, Go

compiler doesn't automatically generate SIMD

instructions. While c2goasm converts Intel assembly to

Go assembly, it doesn't handle AVX512 instructions.

To utilize AVX512 in Go, we developed

autogoassmb, a toolkit compiling C to Go assembly. It

directly converts C source code to Go assembly,

eliminating the need for manual compilation and

function definition. This enhances functionality

compared to c2goasm, enabling AVX512 usage in Go.

Detailed thoughts are as follows:

1) Coding Machine Code

Go assembly provides three instructions for

representing binary machine code:

BYTE represents one byte of binary data. WORD

represents two bytes of binary data. LONG means four

bytes of binary data. If the instruction machine code

length is exactly a multiple of two, for example as

show in Fig. 8.

Fig. 8. ASM CODE from Go

Can be converted to as show in Fig. 9.

Fig. 9. ASM CODE optimization from Go

But if the length is not a multiple of two, for

example as show in Fig. 10.

Fig. 10. ASM CODE not enough from Go

It would require a combination of three instructions

to represent as show in Fig. 11. Note that the byte

order of the instruction encoding and the byte order of

the objdump output are reversed.

Fig. 11. ASM CODE not enough optimization from Go

2) Function Definitions and Arguments

In C assembly, if a function has no more than 6

arguments, then the arguments are saved in registers

and passed to the function in the order of %rdi, %rsi,

%rdx, %rcx, %r8, and %r9. However, in Go assembly,

the arguments of the function are placed in memory

starting from the address saved in the FP registers,

which requires us to move the arguments from the

memory to the registers.

The “_mm512_mul_to” function has four arguments,

so it is necessary to move the four arguments well

before the function starts as show in Fig. 12.

The function definition consists of three parts: the

TEXT keyword, the name starting with - and ending

with (SB), and finally the parameter memory size of 32

bytes. There is no information about the number of

parameters in assembly, you need to get it from the C

function definition.

Fig. 12. ASM CODE not enough optimization from Go

Fig. 13. Final assembly code in Go

디지털콘텐츠학회논문지(J. DCS) Vol. 25, No. 10, pp. 2889-2899, Oct. 2024

http://dx.doi.org/10.9728/dcs.2024.25.10.2889 2896

3) Redirection Jump Instruction

In x86 jump instructions jump to absolute addresses

and direct coding of jump instructions will not work.

Therefore, jump instructions need to be converted to

jump instructions in Go assembly. Converting labels:

labels in Go assemblies cannot start with to start with,

so it is necessary to remove the removed; Conversion

commands: Go assembly jump commands are

uppercase. After the above three-step process, you

end up with Go assembly code as show in Fig. 13.

3-7 Evaluation Methodology

A tenfold cross-validation approach is employed,

whereby each malicious sample's generated flow is

subjected to randomization and subsequently

partitioned into ten equal segments, each integrated

into a distinct, segmented dataset. In each training

iteration, one of the datasets is designated as the

validation set, while the remaining nine serve as the

training set for the detection model. Furthermore,

during the training phase, 100 symbolic sequences are

randomly selected from each sample for model

generation. This is done with the intention of

augmenting the uncertainty in the training phase and

challenging the model's generalization capabilities.

This process of alternating between training and

validation sets is repeated ten times, with the final

detection rate calculated as the average of these ten

iterations.

To ascertain the impact of various parameters and

experimental conditions on the results, we have

designed multiple sets of comparative experiments.

The experiments vary the sequence length (L) and

assess the impact of utilizing multiple sequence

alignments to preprocess the mapped symbolic

sequences of data packets. Furthermore, we examine

the efficacy of our method for detecting unencrypted

traffic and compare it with established methods to

assess the applicability of our approach.

To provide a comprehensive evaluation of the

experimental outcomes, the following metrics are

employed: accuracy, precision, recall, F-measure (a

harmonic mean of precision and recall), and the area

under the curve (AUC) of the receiver operating

characteristic (ROC). The following labels are

assigned:

True positive (TP) samples are those that are actual

positives and predicted as such. False negative (FN)

refers to samples that are actual positives but have

been predicted as negatives. False positive (FP) refers

to samples that are actual negatives but predicted as

positives. True negative (TN) refers to samples that

are actual negatives and predicted as negatives.

The aforementioned metrics can be computed from

these labels.

Precision TP  FP

TP
 (4)

Recall TP  FN

TP
 (5)

F precision  recall
×precision× recall

 (6)

Acuracy TPFN  TN FP

TP  TN
 (7)

Ecificity TNFP

TN
 (8)

It is important to note that in the experimental

measurement of F-measure, the parameter α is set to

1, which corresponds to the actual composite

evaluation index, F1. Furthermore, the accuracy value

should be obtained by calculating the area under the

ROC curve.

Ⅳ. Experiments

4-1 System Environments

In order to make the experimental results more

precise, we tested them in numerous real

environments, and because of the huge amount of data,

we had to use very powerful experimental

environments as show in Table 3.

Resources Specification

CPU ⦁Intel Xeon 9480×2

Language ⦁A100×2

OS
⦁Ubuntu 22.04

⦁OpenWrt 23.05

Libraries
⦁Python 3.6 ⦁GCC 8.5

⦁Tensorflow 1.13.1 ⦁Pytorch 2.0

Table 3. Testing environments

Fast Encrypted Network Traffic Detection System Based on Hidden Markov Models

2897 http://www.dcs.or.kr

4-2 Comparison of the Effectiveness of Algorithms

To evaluate our method against established machine

learning approaches, we use the complete dataset for

accuracy assessment. As some algorithms are

designed for binary classification, we categorize labels

as malicious or benign to distinguish between malware

and normal traffic. We selected three common

classification algorithms: random forest (RF)[15],

support vector machine (SVM)[13], and multilayer

perceptron (MLP)[14].

RF is an ensemble learning method based on

decision trees, combining predictions of multiple trees

to improve classification and address overfitting. SVM

finds a hyperplane in a high-dimensional feature space

to separate the two categories, maximizing the

distance between them. MLP is a feed-forward

artificial neural network with multiple layers, using a

nonlinear activation function and back propagation to

minimize loss and build a classifier model.

In order to facilitate the understanding, we use 12

software commonly used in the real world to analyse

the data, as shown in Fig. 14, the average accuracy

rate obtained by the ten-fold cross-validation method

is 93%, and the experimental results prove that the

multi-terminal alignment strategy proposed in the third

part of this paper has a more obvious enhancement for

traffic detection, but the multi- terminal alignment is

not too friendly in terms of computational power, and it

will very much occupy the CPU resources when the

data sequences are too long.

Fig. 14. Comparison with three algorithms

Therefore, in this experiment, we fix the data length

to 500 for testing, and according to the experimental

results, we prove that this method has strong

effectiveness. The detection model, by considering the

intrinsic connection between subsequence, can match

corresponding key subsequence regardless of the

packet order, effectively capturing malicious traffic

hidden within obfuscated packets.

4-3 About Circumventing Detection

Our biology-inspired approach is protocol-

independent and doesn't rely on metadata, making it

applicable to any encrypted traffic detection.

Experiments demonstrate its feasibility, effectively

handling random sequence population due to high

packet length dependence and evasion techniques. We

also observed numerous duplicate data streams in real

data, mainly from MTU. Experiments with filling

metadata to maximum MTU length and inserting

obfuscated or invalid packets show the algorithm

maintains high accuracy (over 65%) even with more

than half filling, demonstrating strong anti-evasion

capabilities as show in Fig. 15.

Fig. 15. Impact of random data on accuracy

4-4 Effectiveness of Multi-Algorithm Avoidance Detection

Anti obfuscation is an important topic, modern

hackers commonly transmit malicious traffic along with

normal traffic to avoid detection by firewalls, here we

replace the normal traffic with randomized data. The

use of randomly populated data is a better way to

demonstrate the robustness of our system to traffic

detection, as presented in Articles 4-2 and 4-3, where

we compare it with “RF”, “SVM”, and “MLP” in terms

of accuracy, and also with several algorithms in terms

of obfuscation resistance. Next, we also compare the

anti-confusion properties of several algorithms.

As shown in Fig. 16, without exception, none of the

other three algorithms are able to detect effectively

디지털콘텐츠학회논문지(J. DCS) Vol. 25, No. 10, pp. 2889-2899, Oct. 2024

http://dx.doi.org/10.9728/dcs.2024.25.10.2889 2898

with more than 40% padding, and conjecturally, the

performance of the RF algorithms depends heavily on

the quality of the input features. When obfuscation

attacks introduce a lot of noise or change the feature

distribution, the performance of the RF algorithm is

significantly affected. Whereas algorithms such as

SVMs usually establish linear decision boundaries,

obfuscation attacks can be targeted to generate

antagonistic samples that are very close to legitimate

samples in the feature space, thus deceiving the

classifier. And although neural networks such as MLP

have strong nonlinear representation, they are prone

to fall into local minima, resulting in models that are

less robust to adversarial samples. And our algorithm

effectively circumvents the shortcomings of other

algorithms, so it maintains an effective detection rate.

Fig. 16. Effectiveness of multi-algorithm avoidance
detection

4-5 Go AVX512 Performance Comparison

Finally, we compare the performance of the

non-vectorised and vectorised functions. Firstly, the

vectorised function takes significantly less time than

the non-vectorised function, especially when the

vector length is 128; Then, AVX512 has a slight

performance improvement over AVX2. The comparison

as show in Fig. 17.

Fig. 17. Performance comparison of vectorised
implementations

Ⅴ. Conclusion

This paper proposes a novel approach for encrypted

traffic analysis inspired by biological sequence

analysis and profile hidden markov models (HMMs). By

modeling packet-level features as gene sequences and

identifying key subsequence, the method effectively

detects malicious traffic within encrypted

communications. The approach is protocol-

independent, adaptable to evolving malware, and

demonstrates strong resilience against evasion

techniques. Experimental results on real-world

datasets validate its high accuracy and potential for

practical application in network security.

References

[1] O. Yaacoubi, “The Rise of Encrypted Malware,” Network
Security, Vol. 2019, No. 5, pp. 6-9, May 2019.
https://doi.org/10.1016/S1353-4858(19)30059-5

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E.
Bursztein, J. Cochran, ... and Y. Zhou, “Understanding the
Mirai Botnet,” in Proceedings of the 26th USENIX Security
Symposium, Vancouver, Canada, pp. 1093-1110, August
2017.

[3] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner:
Clustering Analysis of Network Traffic for Protocol- and
Structure-Independent Botnet Detection,” in Proceedings of
the 17th USENIX Security Symposium, San Jose: CA, pp.
139-154, July-August 2008.

[4] R. Bortolameotti, T. van Ede, M. Caselli, M. H. Everts, P.
Hartel, R. Hofstede, ... and A. Peter, “DECANTeR:
DEteCtion of Anomalous outbouNd HTTP TRaffic by
Passive Application Fingerprinting,” in Proceedings of the
33rd Annual computer security applications Conference
(ACSAC ’17), Orlando: FL, pp. 373-386, December 2017.
https://doi.org/10.1145/3134600.3134605

[5] R. Bar-Yanai, M. Langberg, D. Peleg, and L. Roditty,
“Realtime Classification for Encrypted Traffic,” in
Proceedings of the 9th International Symposium on
Experimental Algorithms (SEA 2010), Ischia Island, Italy,
pp. 373-385, May 2010. https://doi.org/10.1007/978-3-642-
13193-6_32

[6] B. Anderson and D. McGrew, “Machine Learning for
Encrypted Malware Traffic Classification: Accounting for
Noisy Labels and Non-Stationarity,” in Proceedings of the
23rd ACM SIGKDD International Conference on

Fast Encrypted Network Traffic Detection System Based on Hidden Markov Models

2899 http://www.dcs.or.kr

Knowledge Discovery and Data Mining (KDD ’17),
Halifax, Canada, pp. 1723-1732, August 2017.
https://doi.org/10.1145/3097983.3098163

[7] M. Andrawos and M. Helmich, Cloud Native Programming
with Golang: Develop Microservice-Based High
Performance Web Apps for the Cloud with Go, Birmingham,
UK: Packt Publishing, 2017.

[8] J. M. Cebrian, L. Natvig, and M. Jahre, “Scalability Analysis
of AVX-512 Extensions,” The Journal of Supercomputing,
Vol. 76, No. 3, pp. 2082-2097, March 2020.
https://doi.org/10.1007/s11227-019-02840-7

[9] S. R. Eddy, “Hidden Markov Models,” Current Opinion in
Structural Biology, Vol. 6, No. 3, pp. 361-365, June 1996.
https://doi.org/10.1016/S0959-440X(96)80056-X

[10] T. J. Wheeler and S. R. Eddy, “nhmmer: DNA Homology
Search with Profile HMMs,” Bioinformatics, Vol. 29, No.
19, pp. 2487-2489, October 2013. https://doi.org/10.1093/b
ioinformatics/btt403

[11] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux,
“Password Interception in a SSL/TLS Channel,” in
Proceedings of the 23rd Annual International Cryptology
Conference (CRYPTO 2003), Santa Barbara: CA, pp.
583-599, August 2003. https://doi.org/10.1007/978-3-540-
45146-4_34

[12] B. Wang, Y. Su, M. Zhang, and J. Nie, “A Deep
Hierarchical Network for Packet-Level Malicious Traffic
Detection,” IEEE Access, Vol. 8, pp. 201728-201740,
2020. https://doi.org/10.1109/ACCESS.2020.3035967

[13] H. Wang and D. Hu, “Comparison of SVM and LS-SVM
for Regression,” in Proceedings of 2005 International
Conference on Neural Networks and Brain, Beijing, China,
pp. 279-283, October 2005. https://doi.org/10.1109/ICNNB
.2005.1614615

[14] H. Taud and J. F. Mas, Multilayer Perceptron (MLP), in
Geomatic Approaches for Modeling Land Change
Scenarios, Cham, Switzerland: Springer, ch. 27, pp.
451-455, 2018. https://doi.org/10.1007/978-3-319-60801-3
_27

[15] S. J. Rigatti, “Random Forest,” Journal of Insurance
Medicine, Vol. 47, No. 1, pp. 31-39, January 2017.
https://doi.org/10.17849/insm-47-01-31-39.1

염녕(Ning Yan)

2023년 2월：동명대학교 컴퓨터공학과

학사 (공학사)

2023년 3월∼현 재: 동명대학교 컴퓨터미디어공학과 석사과정

※관심분야：네트워크 보안, IoT, 무선망 기술, 통신기술

추영열(Young-Yeol Choo)

1988년 2월：서울대학교

제어계측공학과

(공학석사)

2002년 2월：포항공대 컴퓨터공학과

(공학박사)

1988년∼2002년: 포스코 기술연구소 책임연구원

2005년∼2005년: 독일 Fraunhofer IESE Visiting Scientist

2002년∼현 재: 동명대학교 컴퓨터공학과 교수

※관심분야：컴퓨터 네트워크, IoT, 네트워크 보안, 실시간

시스템

	Fast Encrypted Network Traffic Detection System Based on Hidden Markov Models
	요약
	Abstract
	Ⅰ. Introduction
	Ⅱ. Related works
	Ⅲ. HMM based Flow Processing
	Ⅳ. Experiments
	Ⅴ. Conclusion
	References

