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[요    약]

순환신경망기반의 딥 패킷탐지 방법은 원시 패킷에서 특징을 자동으로 추출하고 응용 프로토콜을 식별할 수 있지만, 일정한 정

확도를 유지하려면 많은 양의 훈련 데이터와 계산 리소스가 필요하고, 모델의 해석이 좋지 않아 실제 환경에 적용하기가 매우 어

렵다. 이 문제를 해결하기 위해 히든 마르코프 모델을 기반으로 한 네트워크 트래픽 탐지 알고리즘을 제안한다. 암호화된 트래픽

을 게놈 시퀀스로 간주하여 정상적인 네트워크 동작을 모델링하고 이상 징후를 탐지하는 새로운 알고리즘이 제안되어 암호화된 

악성 트래픽을 효과적으로 식별할 수 있다. 제안한 시스템은 기존 알고리즘과 비교하여 95% 이상의 정확도 또한 메타데이터를 최

대 MTU까지 패딩하고 난독화되거나 유효하지 않은 패킷을 삽입함으로써 패딩이 큰 부분 을 초과하더라도 50% 이상의 정확도를 

보장 유지하며 난독화에 강하다는 것을 보였다. 본 연구는 암호화 트래픽 탐지에 대한 새로운 접근 방식을 다양한 분야에서도 적

용될 것이다.
 

[Abstract]

Deep packet detection methods based on recurrent neural networks can automatically extract features from raw packets and 
identify application protocols. However, they require a large amount of training data and computational resources to maintain 
accuracy, and the interpretability of the model is poor, making its real-world applications challenging. To address this issue, we 
propose a network traffic detection algorithm based on hidden Markov models. By treating encrypted traffic as genome sequences, 
this new algorithm models normal network behavior and detects anomalies, effectively identifying encrypted malicious traffic. The 
proposed system achieves over 95% accuracy compared to existing algorithms. Additionally, it is robust against obfuscation 
techniques, such as padding metadata up to the maximum MTU and inserting obfuscated or invalid packets, maintaining accuracy 
above 50% even when padding occupies a significant portion. This research offers a novel approach to encrypted traffic detection, 
which is applicable across various fields.
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Ⅰ. Introduction

Encryption technology has boosted online security, 

but also created opportunities for malicious actors like 

advanced persistent threats (APTs)[1] to exploit 

encrypted traffic. The rise of APT attacks and 

limitations of traditional methods like deep packet 

inspection have highlighted the need for new detection 

techniques. Machine learning, particularly hidden 

markov models (HMMs), shows promise in this area. 

Inspired by genome sequence comparison, HMMs can 

model statistical characteristics of encrypted traffic to 

detect deviations from normal patterns, potentially 

revealing APT activity.

While hypertext transfer protocol secure (HTTPS) is 

the most common encryption protocol, it's also 

frequently used in phishing attacks and by botnets like 

Mirai[2]. This, along with the fact that botnets are 

evolving to be less predictable[3], makes it difficult to 

rely on specific protocol analysis for detection.

Traditional security software struggles to keep up 

with new virus strains and encrypting malware. This 

leaves government agencies and other critical assets 

vulnerable. There's a clear need for dynamic detection 

of malicious encrypted software. Existing research on 

network traffic detection mostly focuses on 

unencrypted traffic, which differs significantly from 

encrypted traffic due to changes in request headers, 

obfuscation techniques (SOCKS5 within HTTPS 

tunnels)[4], and multiple encryption layers.

Machine learning methods like C4.5[5], k-means, 

and support vector machine (SVM)[6] have been used 

for encrypted traffic detection, but they often rely on 

accurate data labeling. Semi-supervised learning 

approaches like clustering and HMMs offer 

alternatives, but still face challenges in identifying 

different types of malware. Some studies have 

achieved impressive results, like the random forest 

algorithm by Anderson will be show in this paper 4-2 

part. But it only distinguishes between malware and 

benign traffic, not different malware types.

This paper proposes an HMM-based approach for 

detecting encrypted traffic of packet-swapped 

malware, drawing inspiration from gene sequence 

detection in biology. The approach aims to address the 

challenges of detecting evolving malware and 

achieving high accuracy in real-world data. It also 

leverages Go and the AVX512 instruction set for 

improved efficiency[7],[8].

Ⅱ. Related works

2-1 Hidden Markov Model

Hidden markov model[9] is a statistical model for 

describing a Markov process with unknown 

parameters. Its core principles are: (1) the next state 

depends only on the current state, and (2) the output 

depends only on the current state. Originally used in 

biological sequence analysis, HMM has been applied in 

various fields like speech recognition and text 

classification.

In a simple example with letters a and b, HMM starts 

with an initial state, transitions to new states based on 

probabilities, and emits a symbol (like the letter “a”) 

based on emission probabilities associated with the 

current state. This process repeats until a final state, 

resulting in a sequence of hidden states and observed 

symbols.

The “hidden” in HMM refers to the fact that only the 

symbol sequence is directly observable, while the 

hidden state sequence follows a first-order Markov 

chain.

2-2 Profile HMM

As shown in Fig. 1, Profile HMM[10] extends HMM 

with two states: Insert, allowing insertion of states 

between any two states, and Delete, enabling state 

deletion.

Profile hidden markov models (Profile HMMs) 

enhance traditional HMMs by incorporating Insert and 

Delete states to better handle sequence variations like 

insertions or deletions often found in biological or 

network data. Unlike HMMs, Profile HMMs leverage 

multiple sequence alignments to record positional 

information of states, enabling them to model specific 

locations where insertions or deletions are likely to 

occur. Profile HMMs offer two key advantages over 

HMMs: utilizing positional information of observed 

sequences and allowing null transitions to match 

sequences with insertions or deletions.

In Fig. 1, Insert (I) states allow symbol insertion 
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before Match (M) or Delete (D) states, while Delete 

(D) states allow symbol deletion. The model transitions 

between states based on symbol matches and 

mismatches.

This paper applies profile HMMs to network 

security by constructing encrypted traffic as gene 

sequences and using homologous gene search 

algorithms to detect malicious attacks within the 

encrypted traffic.

Fig. 1. Overview of the profile HMM

2-3  Problems with Encrypted Traffic Identification using 

HMM

Existing HMM-based methods for encrypted traffic 

analysis often fall short due to their reliance on 

simplified models and limited state representation. To 

address this, we propose a series of enhancements:

1) Introduce a two-dimensional feature combining 

packet length and message type during the handshake 

process to expand the number of Markov states. 

Incorporate a second-order Markov model to capture 

more complex dependencies in traffic patterns.

2) Utilize packet sizes during data transmission to 

construct an HMM model, refining emission 

probabilities by considering the correlation between 

adjacent packet sizes.

These enhancements aim to improve the accuracy 

and effectiveness of HMM-based encrypted traffic 

analysis by providing a more comprehensive and 

discriminative model.

2-4 The Markov Chain Model  based on the Handshaking 

Process

The secure sockets layer/transport layer security 

(SSL/TLS)[11] handshake process, a series of 

message exchanges to establish a secure connection, 

can be modeled as a Markov chain. Each state 

represents a handshake stage, with transitions 

governed by protocol rules, and observed message 

features as emissions. This approach is protocol 

agnostic, adaptable to various SSL/TLS versions, and 

feature-rich, capturing diverse application behaviors. 

As show in Fig. 2 and Table 1, our HMMS structured 

the message content of the protocol according to the 

different intervals of the TLS handshake. Shows the 

contents of the protocol messages at different times of 

the TLS handshake. This model can be used for 

encrypted traffic classification, anomaly detection, and 

protocol fingerprinting. However, challenges like state 

space complexity and adversarial evasion need to be 

addressed.

Fig. 2. Markov chain model based on and shaking 
process 

Plain Text SSL/TLS Handshake Characteristics

20 Change Cipher Spec

21 Alert

22:02 Server Hello

22:11 Certificate

22:12 Server Key Exchange

22:13 Certificate Request

22:14 Server Hello Done

22:17 Encrypted Handshake Message

22:18 New Session Ticket

22:20 Finished

23 Application Data

Table 1. Markov chain model based on handshaking 
process 
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2-5 The profile HMM Employed in Conjunction with 

Encrypted Traffic

Inspired by Profile HMMs, this section integrates 

packet-level features into a model for encrypted 

traffic analysis. Both traffic sequences and gene 

sequences evolve over time, and key subsequence 

within them can reveal their overall classification.

Fig. 3. Markov chain model implementation example

Similar to how core gene fragments in homologous 

gene sequences can be traced back to their gene 

families, key subsequence in malicious traffic retain 

attack characteristics. This paper aims to analyze 

these “key genes” to detect malicious attacks. 

To account for packet sequence variations within 

the same protocol, the model includes Insert and 

Delete states for each position. Insert states represent 

duplicate or retransmitted packets, while Delete states 

signify packet loss. 

Fig. 4. Markov chain state characteristics diversification  

Each chain in the Profile HMM is associated with a 

specific packet, and states emit symbols with 

position-specific probability distributions. Fig. 3 and 

Fig. 4 illustrate the routine modeling process for 

encrypted traffic detection based on profile hidden 

Markov models (HMMs). Slicing and dicing the 

communication process during a TLS handshake allows 

us to understand exactly what is going on at each step 

of the TLS communication process. This removes 

unnecessary packets thus retaining exactly the data 

we need.

Ⅲ. HMM based Flow Processing

3-1 Core Work

The objective of this study is to enhance the hidden 

markov model based on the data transmission process 

as show in Fig. 5. ADPT is a packet length of 

application data. A DPT Represents the length of an 

application packet and can be viewed as a state in the 

data transmission process. state transfer Represents 

the process of transferring the packet length from one 

state to another. Launch probability Optimization It 

may refer to some optimization algorithm that adjusts 

the probability of state transfer to better fit the actual 

network traffic data.

Fig. 5. Improvement of HMM model based on data       
transmission process

Malicious traffic often has a distinct temporal 

signature, which attackers try to disguise through 

delayed transmission and data obfuscation[12]. 

However, these tactics also introduce overheads that 

create hidden patterns, exploitable for detection.

We capture and filter traffic to obtain packet 

sequences, then symbolize them to reduce observable 

states in the HMM, enhancing robustness. This allows 

us to create a model with a single gene sequence 

representing all sequences from the same malicious 

sample. Multiple sequences can be used as training 

samples for better efficacy. Detection involves 

transforming the test sample into a symbolic sequence 

and comparing it against known sequences.
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3-2 HMM Launch Probability Optimization: A Specific 

Description

If a detection model performs whole-sequence 

matching on pre-established malicious samples and 

sequences awaiting detection, it may misidentify 

non-key subsequence and miss actual key 

subsequence, making it ineffective against attacks with 

obfuscated packets. However, the proposed model 

segments the sequence into individual subsequence, 

allowing it to match key subsequence regardless of the 

order in which the attacker sends packets.

This enables detection of malicious samples despite 

obfuscation:

  ↓  (1)

Where “B” is the number of Markov states and “b” 

and “im” are the packet length and message type of 

the handshake process, respectively.

The probability of a successful launch has been 

enhanced:

  ↓↓  (2)
 

Specifically:

↓↓  ↓↓ ↓   (3)

The probability of a successful firing is enhanced 

when the last observed feature state is ↓ and 

the hidden state is ↓. This probability is dependent 

on the value of the observation feature.

3-3 Block Diagram of the Overall System Structure

Before training each HMM, the training set 

undergoes multiple order alignment, aligning 

homologous parts of sequences by inserting special 

symbols. This facilitates the discovery of common 

subset sequences, making the model easier to train 

and enhancing the hit rate of analogous subsequence, 

preventing the model from being trapped in local 

optima. The full structure is as show in Fig. 6.

① Preprocessing: Capture SSL/TLS traffic: Collect a 

large amount of SSL/TLS traffic data. Traffic Statistics 

and Feature Extraction: Perform statistical analysis of 

the captured traffic to extract attributes that 

characterize the traffic, such as packet length, interval 

time, protocol type, etc.

② Multi-order Alignment: Before training each 

HMM model, the sequences in the training set are 

multi-order aligned. By inserting special symbols, the 

homologous parts of different sequences are aligned 

so that common subsequences can be found. 

Significance of Alignment: The purpose of alignment is 

to improve the efficiency and accuracy of model 

training. Through the alignment, it can make the model 

easier to learn the commonality between sequences, 

so as to improve the hit rate of similar subsequences 

and avoid the model falling into the local optimum.

③ Model Training: Multiple HMM models: For each 

feature subset, train one HMM model, which can 

effectively model sequence data, capturing transfer 

probabilities and firing probabilities between 

sequences.

④ Combining Markov models: In addition to HMM 

models, Markov models are also combined. Markov 

models capture the transfer relationships between 

neighboring states in a sequence.

⑤ Multiple classifiers: Multiple trained HMM models 

and Markov models are used as base classifiers.

⑥ Weighted Integration: Integrate the base 

classifiers by assigning different weights to each of 

them to form a weighted integrated classifier.

⑦ Final Classification: The weighted integrated 

classifier classifies the new test samples and outputs 

the final classification result.

Fig. 6. Overall architecture of weighted ensemble 
classifier
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3-4 Data Preparation

This experiment employs the open-source dataset 

USTC-TFC2016[12] and SSL Blacklist[11], in 

addition to traffic obtained following authorization on a 

public network to assess the efficacy of the model.

The USTC-TFC2016 dataset, created by the 

University of Science and Technology of China, is a 

benchmark for encrypted traffic classification and 

analysis. It contains real-world encrypted traffic 

traces with labeled application types, making it 

suitable for supervised learning. This dataset captures 

the nuances of real-world traffic, including variations 

in packet sizes, timings, and content. However, it's 

important to note that encrypted traffic patterns are 

dynamic and adversaries can use evasion techniques, 

highlighting the need for continuous model updates and 

adaptation.

The SSL Blacklist (SSL BL) dataset collects 

malicious SSL-related certificates, domain names, and 

other data. In this study, Suricata's rule sets and the 

SSL BL dataset are used to identify malware, resulting 

in 1,605 malicious samples across 16 malware families 

and as show in Table 2. 

Malware Family Sample Size
Sample Flow 

Data Volume

IcedID 201 8251

CobInt 33 4687

Gozi 185 7671

OrcusRAT 153 6972

Adwind 52 4937

AsyncRAT 47 5640

Ostap 137 6839

TA505 38 4468

FindPOS 177 7490

TinyNuke 115 6003

ServHelper 25 3528

PsiXBot 94 5586

AZORult 61 5309

PredatorStealer 103 7195

NetWire 47 4115

PandaZeus 137 6898

Table 2. Virus family schematic

3-5 Data Processing and Modelling

To analyze malware behavior, packet data is 

symbolized into a matchable sequence. First, malicious 

sample data is serialized using MapReduce to 

aggregate encrypted traffic within a timeframe.

For each packet, its size and direction are extracted 

(3000 possibilities). To avoid excessive symbols and 

poor model performance, a grouped symbolization 

approach divides possibilities into 3000/capacity 

groups.

After symbolizing individual packets, all packets are 

processed. Data streams exceeding a set length are 

truncated, while shorter ones are padded. This 

completes preprocessing  as show in Fig. 7.

Fig. 7. The encrypted traffic sequence symbolization 
algorithm

In the algorithm, Symbolize (p→length) signifies 

that, in accordance with the capacity that has been 

established, the packet of a given length is 

transformed into the symbol of the corresponding 

group. In the algorithm, Symbolize (p→length) signifies 

the conversion of a packet of length into a symbol of 

the corresponding group, contingent upon the capacity 

that has been set. To illustrate, a packet of one byte in 

size is assigned to the range +0, +1, and so forth.

The capacity group is designated as +1, +2, +3, 

and so forth, with the group identifier assigned in the 

order of aa, ab, ac, and so on. In the event that the 

capacity is equal to 10, the corresponding group is 

designated as “fl.” This implies that the packet has 

successfully traversed the specified group.

Conversely, if the capacity is equal to 10, the 

corresponding packet is designated as “fl.” This 

signifies that the packet has been successfully mapped 
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to the character “fl” following the process of 

symbolization.

3-6 AVX512 Accelerated Go Reasoning

Advanced vector extensions 512 (AVX512), Intel's 

latest single instrument multiple data (SIMD) 

instruction set, can process 512 bits of data per cycle, 

offering potential acceleration for vector computations 

in Go-based deep learning systems. However, Go 

compiler doesn't automatically generate SIMD 

instructions. While c2goasm converts Intel assembly to 

Go assembly, it doesn't handle AVX512 instructions.

To utilize AVX512 in Go, we developed 

autogoassmb, a toolkit compiling C to Go assembly. It 

directly converts C source code to Go assembly, 

eliminating the need for manual compilation and 

function definition. This enhances functionality 

compared to c2goasm, enabling AVX512 usage in Go.

Detailed thoughts are as follows:

1) Coding Machine Code 

Go assembly provides three instructions for 

representing binary machine code:

BYTE represents one byte of binary data. WORD 

represents two bytes of binary data. LONG means four 

bytes of binary data. If the instruction machine code 

length is exactly a multiple of two, for example as 

show in Fig. 8.

Fig. 8. ASM CODE from Go

Can be converted to as show in Fig. 9.

Fig. 9. ASM CODE optimization from Go

But if the length is not a multiple of two, for 

example as show in Fig. 10.

Fig. 10. ASM CODE not enough from Go

It would require a combination of three instructions 

to represent as show in Fig. 11. Note that the byte 

order of the instruction encoding and the byte order of 

the objdump output are reversed.

Fig. 11. ASM CODE not enough optimization from Go

2) Function Definitions and Arguments 

In C assembly, if a function has no more than 6 

arguments, then the arguments are saved in registers 

and passed to the function in the order of %rdi, %rsi, 

%rdx, %rcx, %r8, and %r9. However, in Go assembly, 

the arguments of the function are placed in memory 

starting from the address saved in the FP registers, 

which requires us to move the arguments from the 

memory to the registers. 

The “_mm512_mul_to” function has four arguments, 

so it is necessary to move the four arguments well 

before the function starts as show in Fig. 12.

The function definition consists of three parts: the 

TEXT keyword, the name starting with - and ending 

with (SB), and finally the parameter memory size of 32 

bytes. There is no information about the number of 

parameters in assembly, you need to get it from the C 

function definition.

Fig. 12. ASM CODE not enough optimization from Go

Fig. 13. Final assembly code in Go
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3) Redirection Jump Instruction

In x86 jump instructions jump to absolute addresses 

and direct coding of jump instructions will not work. 

Therefore, jump instructions need to be converted to 

jump instructions in Go assembly. Converting labels: 

labels in Go assemblies cannot start with  to start with, 

so it is necessary to remove the removed; Conversion 

commands: Go assembly jump commands are 

uppercase. After the above three-step process, you 

end up with Go assembly code as show in Fig. 13.

3-7 Evaluation Methodology

A tenfold cross-validation approach is employed, 

whereby each malicious sample's generated flow is 

subjected to randomization and subsequently 

partitioned into ten equal segments, each integrated 

into a distinct, segmented dataset. In each training 

iteration, one of the datasets is designated as the 

validation set, while the remaining nine serve as the 

training set for the detection model. Furthermore, 

during the training phase, 100 symbolic sequences are 

randomly selected from each sample for model 

generation. This is done with the intention of 

augmenting the uncertainty in the training phase and 

challenging the model's generalization capabilities. 

This process of alternating between training and 

validation sets is repeated ten times, with the final 

detection rate calculated as the average of these ten 

iterations.

To ascertain the impact of various parameters and 

experimental conditions on the results, we have 

designed multiple sets of comparative experiments. 

The experiments vary the sequence length (L) and 

assess the impact of utilizing multiple sequence 

alignments to preprocess the mapped symbolic 

sequences of data packets. Furthermore, we examine 

the efficacy of our method for detecting unencrypted 

traffic and compare it with established methods to 

assess the applicability of our approach.

To provide a comprehensive evaluation of the 

experimental outcomes, the following metrics are 

employed: accuracy, precision, recall, F-measure (a 

harmonic mean of precision and recall), and the area 

under the curve (AUC) of the receiver operating 

characteristic (ROC). The following labels are 

assigned:

True positive (TP) samples are those that are actual 

positives and predicted as such. False negative (FN) 

refers to samples that are actual positives but have 

been predicted as negatives. False positive (FP) refers 

to samples that are actual negatives but predicted as 

positives. True negative (TN) refers to samples that 

are actual negatives and predicted as negatives.

The aforementioned metrics can be computed from 

these labels.

Precision TP  FP

TP
  (4)

Recall TP  FN

TP
  (5)

F precision  recall
×precision× recall

  (6)

Acuracy TPFN  TN FP

TP  TN
  (7) 

Ecificity TNFP

TN
  (8)

 

It is important to note that in the experimental 

measurement of F-measure, the parameter α is set to 

1, which corresponds to the actual composite 

evaluation index, F1. Furthermore, the accuracy value 

should be obtained by calculating the area under the 

ROC curve.

Ⅳ. Experiments

4-1 System Environments

In order to make the experimental results more 

precise, we tested them in numerous real 

environments, and because of the huge amount of data, 

we had to use very powerful experimental 

environments as show in Table 3.

Resources Specification

CPU ⦁Intel Xeon 9480×2

Language ⦁A100×2

OS
⦁Ubuntu 22.04

⦁OpenWrt 23.05

Libraries
⦁Python 3.6            ⦁GCC 8.5

⦁Tensorflow 1.13.1  ⦁Pytorch 2.0

Table 3. Testing environments 
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4-2 Comparison of the Effectiveness of Algorithms

To evaluate our method against established machine 

learning approaches, we use the complete dataset for 

accuracy assessment. As some algorithms are 

designed for binary classification, we categorize labels 

as malicious or benign to distinguish between malware 

and normal traffic. We selected three common 

classification algorithms: random forest (RF)[15], 

support vector machine (SVM)[13], and multilayer 

perceptron (MLP)[14].

RF is an ensemble learning method based on 

decision trees, combining predictions of multiple trees 

to improve classification and address overfitting. SVM 

finds a hyperplane in a high-dimensional feature space 

to separate the two categories, maximizing the 

distance between them. MLP is a feed-forward 

artificial neural network with multiple layers, using a 

nonlinear activation function and back propagation to 

minimize loss and build a classifier model.

In order to facilitate the understanding, we use 12 

software commonly used in the real world to analyse 

the data, as shown in Fig. 14, the average accuracy 

rate obtained by the ten-fold cross-validation method 

is 93%, and the experimental results prove that the 

multi-terminal alignment strategy proposed in the third 

part of this paper has a more obvious enhancement for 

traffic detection, but the multi- terminal alignment is 

not too friendly in terms of computational power, and it 

will very much occupy the CPU resources when the 

data sequences are too long. 

Fig. 14. Comparison with three algorithms

Therefore, in this experiment, we fix the data length 

to 500 for testing, and according to the experimental 

results, we prove that this method has strong 

effectiveness. The detection model, by considering the 

intrinsic connection between subsequence, can match 

corresponding key subsequence regardless of the 

packet order, effectively capturing malicious traffic 

hidden within obfuscated packets.

4-3 About Circumventing Detection

Our biology-inspired approach is protocol- 

independent and doesn't rely on metadata, making it 

applicable to any encrypted traffic detection. 

Experiments demonstrate its feasibility, effectively 

handling random sequence population due to high 

packet length dependence and evasion techniques. We 

also observed numerous duplicate data streams in real 

data, mainly from MTU. Experiments with filling 

metadata to maximum MTU length and inserting 

obfuscated or invalid packets show the algorithm 

maintains high accuracy (over 65%) even with more 

than half filling, demonstrating strong anti-evasion 

capabilities as show in Fig. 15.

Fig. 15. Impact of random data on accuracy

4-4 Effectiveness of Multi-Algorithm Avoidance Detection

Anti obfuscation is an important topic, modern 

hackers commonly transmit malicious traffic along with 

normal traffic to avoid detection by firewalls, here we 

replace the normal traffic with randomized data. The 

use of randomly populated data is a better way to 

demonstrate the robustness of our system to traffic 

detection, as presented in Articles 4-2 and 4-3, where 

we compare it with “RF”, “SVM”, and “MLP” in terms 

of accuracy, and also with several algorithms in terms 

of obfuscation resistance. Next, we also compare the 

anti-confusion properties of several algorithms.

As shown in Fig. 16, without exception, none of the 

other three algorithms are able to detect effectively 
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with more than 40% padding, and conjecturally, the 

performance of the RF algorithms depends heavily on 

the quality of the input features. When obfuscation 

attacks introduce a lot of noise or change the feature 

distribution, the performance of the RF algorithm is 

significantly affected. Whereas algorithms such as 

SVMs usually establish linear decision boundaries, 

obfuscation attacks can be targeted to generate 

antagonistic samples that are very close to legitimate 

samples in the feature space, thus deceiving the 

classifier. And although neural networks such as MLP 

have strong nonlinear representation, they are prone 

to fall into local minima, resulting in models that are 

less robust to adversarial samples. And our algorithm 

effectively circumvents the shortcomings of other 

algorithms, so it maintains an effective detection rate.

Fig. 16. Effectiveness of multi-algorithm avoidance       
detection

4-5 Go AVX512 Performance Comparison

Finally, we compare the performance of the 

non-vectorised and vectorised functions. Firstly, the 

vectorised function takes significantly less time than 

the non-vectorised function, especially when the 

vector length is 128; Then, AVX512 has a slight 

performance improvement over AVX2. The comparison 

as show in Fig. 17.

Fig. 17. Performance comparison of vectorised         
implementations 

Ⅴ. Conclusion

This paper proposes a novel approach for encrypted 

traffic analysis inspired by biological sequence 

analysis and profile hidden markov models (HMMs). By 

modeling packet-level features as gene sequences and 

identifying key subsequence, the method effectively 

detects malicious traffic within encrypted 

communications. The approach is protocol- 

independent, adaptable to evolving malware, and 

demonstrates strong resilience against evasion 

techniques. Experimental results on real-world 

datasets validate its high accuracy and potential for 

practical application in network security.
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