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[요    약]

CIP(Cross-Information Potential) 성능 기준을 바탕으로 개발된 블라인드 신호 처리 학습 알고리즘은 충격성 잡음 환경에서도 채

널 왜곡으로 인한 심볼 간 간섭에 대한 보상 성능이 뛰어나다. CIP 알고리즘의 단점 중 하나는, 원하는 수준의 확률분포 정확도를 

보장하기 위해 N(샘플 사이즈)개의 출력 샘플과 심볼점 간의 모든 상호 작용을 고려하므로 큰 샘플 사이즈가 선호되어 계산 복잡

성이 크다는 점이다. 본 논문에서는 다른 모든 샘플보다 현재 샘플이 갖고 있는 정보가 가장 유용하다는 가정하에 모든 출력 샘플 

대신 현재 출력 샘플만 상호 작용에 사용하기를 제안하며 이로 인해 제안된 알고리즘의 계산 복잡도가 샘플 크기와 관련이 없게 된

다. 시뮬레이션 결과에서 제안한 알고리즘은 N=20에 대해 학습 성능의 큰 손실 없이 계산 복잡도를 약 21배 정도 감소시켰으며, 이
는 제안한 성능 기준 및 알고리즘이 기존 CIP 알고리즘보다 실제 구현에 더 적합할 수 있음을 나타낸다.

[Abstract]

The learning algorithm for blind signal processing developed from the performance criterion of cross-information potential (CIP) 
has superior compensation performance for intersymbol interference induced by channel distortion, even under impulsive noise. 
One of the drawbacks of the CIP algorithm is a heavy computational complexity caused by considering all the interactions 
between N (sample size) output samples and the symbol points where a large sample size is preferable to guarantee a desired 
level of accuracy in distribution estimation. In this paper, the idea of taking only the current output sample into their interactions 
instead of all output samples is proposed under the assumption that the information the current sample has is the most useful of 
all other samples; this leads to the computational complexity of the proposed algorithm not being related to the sample size. The 
simulation results show that the proposed algorithm significantly reduces the computational complexity by approximately 21 times 
for N=20 without noticeable loss of learning performance, which indicates that the proposed criterion and algorithm are more 
suitable for practical implementations than the conventional CIP algorithm.
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Ⅰ. Introduction

Blind algorithms for signal processing or communication 

systems are being effectively utilized in overcoming 

signal distortion or inter-symbol interference induced 

by storage media or communication channels. Blind 

algorithms do not need a training sequence to recover 

the distorted signal or to restart after a communications 

breakdown[1],[2]. This advantage has been increasingly 

utilized in computer communication networks and 

broadcasting systems[3]. 

The training of blind adaptive systems has usually 

been accomplished by using the constant modulus error 

(CME) and the mean squared error (MSE) criterion[4],[5]. 

Unlike the MSE criterion that utilizes CME energy, ITL 

methods introduced by Princepe uses a nonparametric 

probability density function (PDF) estimation and 

information potential (IP) which measures interactions 

among pairs of data samples[6],[7]. It contains higher 

order moments of the PDF and is much simpler to 

estimate directly from samples than conventional 

moments expansions.

The MSE based learning algorithms are known not 

to yield sufficient performance in non-Gaussian noise, 

such as impulsive noise environments[6],[8]. On the 

other hand, learning algorithms developed from the ITL 

methods can break through these obstacles partly due 

to the kernel-based PDF estimation and information 

potential[6]. The minimum error entropy (MEE) 

criterion as one of ITL criteria is a powerful approach 

for non-Gaussian signal processing as well as for 

robust machine learning[9],[10]. One of its drawbacks 

is that it has been designed only for supervised 

learning. Another problem is its computational complexity 

including double summation operations. Recently a 

simplified version of MEE has been introduced by 

utilizing only two error samples that contribute mostly 

to performance enhancement[11].

Besides the concept of IP, through the extension of 

the definition of correlation function for random 

processes, the generalized correlation function called 

correntropy has become another performance criterion 

of ITL and developed to be applied to blind signal 

processing[12]. The correntropy is related to the 

probability of how similar two random variables are in 

the neighborhood of the joint space[13]. 

In this paper, in order to develop efficient and 

unsupervised learning algorithms which are robust in 

impulsive noise environment, we briefly explain blind 

algorithms based on correntropy and IP, and then 

propose a simplified IP criterion and its related 

algorithms for computational complexity reduction 

without noticeable loss of performance. 

Ⅱ. Blind Performance Criteria based on Gaussian 

Kernel

With a kernel size σ, the Gaussian kernel is defined 

as

 √ exp   (1)

Given N (sample size) data samples {}, the 

correntropy function  [n] with sample distance or 

time distance  is described as follows[12],[13].

    ∑       (2)

When it comes to dissimilarity measure as a kind of 

error concept, the squared difference  between the 

transmitter correntropy   and that of the receiver   can become a cost function or a performance 

criterion as proposed in[12].  We refer to this  as 

MSCD (mean squared correntropy distance) in this 

paper for convenience’s sake.  

   ∑      (3)

On the other hand, the information potential (IP) can 

be a kind of performance criterion. The concept of 

information potential may be summarized as follows.  

When we see the value of a given data sample  as 

the location of the data axis  , the kernel function √   for two data samples  and  on the axis 

produces exponential decaying outcomes regarding the 

distance between  and . This can be interpreted as 

the Gaussian  kernel √   plays a role as a 

potential field  that induces the interactions between 

the two particle-like data samples  and . The 

perspective regarding a data sample as a particle with 

information in an information potential field becomes 

the basis of the concept of information theoretic 
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learning (ITL)[6],[7]. 

Then ∑   √   is corresponding to the 

summed interactions towards to  and 

  ∑   ∑   √   becomes the averaged total 

interaction among all data samples on the  axis.  This 

function of total interactions is called information 

potential[6]. That is, the information potential  for 

a given set of samples  can be written as 

   ∑   ∑   √    (4)

We may notice in (4) that when the samples are 

placed close to each other the potential energy 

becomes high and vice versa.

The information potential can be expressed with a 

probability density function  based on kernel 

density estimation method[14].

   ∑      (5)

Then, ∫  becomes   

∫    ∫∑    ∑    
  ∑   ∑   √ 

  

(6)

Therefore, 

  ∫  (7)

For the two different densities   and , the 

cross information potential (CIP) called information 

potential  is defined in[7] as

 ∫   (8)

We can notice that when the samples  and  are 

placed close together the information potential  

becomes high and vice versa.  

For application to blind equalization in communication 

with   modulation schemes, technology, the 

density   can be constructed from the transmitter 

symbol set    and density  is from 

the receiver output samples   . 

When the transmitted symbol at time k is assumed to 

be randomly chosen with equal probability,   and  can be obtained    

     (9) 

where  is the Dirac-delta function on the  axis.  

And through the kernel density estimation method 

with the sample size   as in (5)   becomes 

   ∑             (10) 

Then the equation (8) using (9) and (10) can be 

rewritten as  

   ∑   ∑       (11)

  

The two ITL-type criteria,  of MSCD, and  

of CIP can be summarized as in (3) and (11), 

respectively.  

For comparison’s sake, the common blind criterion  for the constant modulus algorithm (CMA) can be 

rewritten as 

     (12)
  

where     
  Minimizing this criterion leads to force equalizer 

output powers to have the same value, . In   

modulation schemes, the power of each desired signal 

has different values. The force induced from 

minimizing  will lose its target direction because 

the cost function forces the equalizer outputs to obtain 

the same output power  in spite of each symbol’s 

desired power being different from each other. This 

may lead the CMA cost function  to ill-convergence 

more severely in impulsive noise situations.

Ⅲ. Proposed CIP Criterion

The fact that the information potential  in (2) is 

the interaction energy among all data samples on the  
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axis leads us to view the CIP in (11) as the 

interactions between the   symbol points and   

output samples . 

Instead of considering all the interactions of 
output samples towards to the symbol points, we may 

consider only that of  under the assumption that the 

information the current sample  has is the most 

useful of all other samples. This assumption will be 

verified through experiment in Section V.

So, we intend to consider only the interactions 

between  and all symbol points . Then 

the simplified CIP becomes

  ∑      (13)

This proposed (13) will be referred to as SCIP 

(simplified CIP) in this paper. It may be needed to 

observe performance difference between  and its 

simplified version  through the experiment in 

Section V.

Ⅳ. Blind Learning Algorithms

For the input vector     and 

weight    at time k, the linear 

combiner produces the output   .  The MSCD 

algorithm for weight update is obtained by minimizing  in (3) with a step size .

    
 ∑   ∑    

          
 

(14)

The CIP algorithm is obtained by maximizing  

in (11) as

   
 ∑   ∑     ∙   ∙

 (15)

Likewise, maximizing  leads to SCIP algorithm 

with a step size  as

      
  ∙ ∙

  (16)

For comparison, the CMA algorithm (CMA) obtained 

from minimizing  with respect to system weights 

can be written as 

    ∙  ∙ (17)
 

It may be worthwhile to observe different 

performance among CMA in (12), MSCD in (3), CIP in 

(11) and its simplified version SCIP in (13) through the 

experiment in Section V.

Ⅴ. Simulation Results and Discussion

In this Section, the learning performance of the MSCD 

algorithm and its simplified version SCIP is analyzed in 

the experiment of a base-band communication system 

as shown in Fig. 1.

Fig. 1. A Base-band communication system for the 
experiment

For the data generation of 4 symbols (  ), one of        is randomly chosen 

(equiprobable) and sent at time  . The transmitted 

symbol is through the communication channel  
where the symbol is distorted by intersymbol 

interference and then corrupted by impulsive noise. 
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The receiver is equipped with a linear combiner    with   . The transfer function  is 

in (18) as in[8].

     (18)

The impulse response of (18) corresponds to 

       
(19)

where  is the symbol period.

The impulsive noise  comprises impulses and white 

Gaussian noise. The impulses are generated as 

in[12],[13] by Poisson process with variance 50 and 

occurrence rate 0.03. The variance of the Gaussian 

noise is set 0.001. A sample of the impulsive noise is 

shown in Fig. 2. 
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Fig. 2. A sample of impulsive noise (a sample of random 
impulsive noise generated by the method[12])

The system weights of the CIP and SCIP are 

updated with the common step size     

and the kernel size   . The step sizes for CMA 

and MSCD,  and  are set 0.01 and 0.00001, 

respectively. The kernel size for MSCD is 2.8 and the 

sample size   .

In Fig. 3 showing the MSE learning curves we may 

observe that the learning curve of CMA in (3) does not 

converge below -7 dB which indicates that CMA is 

inappropriate. But the CIP or SCIP algorithms show 

fast and stable convergence to around –27 dB. The 

MSE learning curves of the proposed SCIP and the 

conventional CIP result in similar performance with 

only slightly different steady state MSE of -2.7 dB and 

-2.75 dB, respectively. That difference can be viewed 

as negligible in most communication systems which 

usually demand performance difference of above 3 dB 

in order for a new system to be judged as better or 

superior. 
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Fig. 3. MSE learning curves 

We may see that this property of performance 

equality that the SCIP has reveals that the interactions 

between  and symbol points  are enough 

for the weight update to count in rather than considering 

all the interactions of  and the 

symbol points .

Besides this property, the proposed SCIP algorithm 

has a figure of merit that its computational complexity 

in multiplication is remarkably reduced. For the sake 

of convenience of comparison,  and the Gaussian 

kernel    which commonly exist in both 

methods, CIP in (10) and SCIP in (11), are treated as 

constants.

The block-processing method (10) demands   

multiplications at each iteration time while the proposed 

method (11) requires 3M multiplications. It is important 

that the computational complexity of the proposed one 

is not related with the sample size since a large 

sample size is preferable in order to guarantee a 

desired level of accuracy[15]. 

Fig. 4 shows the number of multiplications with 

respect to sample size and it is apparent that the 

proposed SCIP algorithm is more appropriate to 

practical implementations. 
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On the other hand, the assumption that the current 

output  has more useful information than all other 

samples  can be verified through the 

performance comparison of the system error distribution 

which depicted in Fig. 5. In Fig. 5, the error distribution 

of case A which considers only the interactions 

between the current output  and the symbol points  has a bell shape distribution narrow 

enough to gather most error samples near zero. The 

contribution to error performance enhancement by 

adding the interactions between the past output  
and the symbol points is insignificant as we can see in 

the case B. We can also observe the similar results in 

case C where the interactions between ,  and 

the symbol points are added. This indicates that the 

information the current output sample  has is the 

most useful of all other outputs.
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Fig. 6. Output signal (a) and center-weight trace (b)

It is noticeable how the impulsive noise is processed 

in the learning algorithm SCIP. The resulting output 

signal in Fig. 6(a) shows that the output samples 

gather on their corresponding target symbol points 

after convergence though the impulses are not removed. 

The weight trace (the center weight is chosen for 

convenience’s sake) in (b) verifies the robustness of 

SCIP by showing that it converges its steady state 

value without any disturbance or fluctuations even 

under the strong impulsive noise. 

Ⅵ. Conclusion

For overcoming the multipath channel distortions 
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and non-Gaussian noise effects, many performance 

criteria and related blind algorithms have been developed 

based on the information potential concept which was 

built onprobability estimation. Despite its superior 

performance in non-Gaussian impulsive noise, the 

algorithms require heavy computational burden due to 

a large sample size for guaranteeing a desired level of 

accuracy of probability estimation. The proposed 

performance criterion and weight update algorithm 

significantly reduces the computational complexity 

without noticeable loss of performance in unsupervised 

learning and impulsive noise situations. This indicates 

that the proposed algorithm can replace the supervised 

MEE algorithms for unsupervised learning not needing 

training data and the CIP algorithm for reduced complexity. 

We may conclude thatthe proposed SCIP algorithm can 

be more appropriate to practical implementations than 

the conventional CIP algorithm. 
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