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[Abstract]

The learning algorithm for blind signal processing developed from the performance criterion of cross-information potential (CIP)
has superior compensation performance for intersymbol interference induced by channel distortion, even under impulsive noise.
One of the drawbacks of the CIP algorithm is a heavy computational complexity caused by considering all the interactions
between N (sample size) output samples and the symbol points where a large sample size is preferable to guarantee a desired
level of accuracy in distribution estimation. In this paper, the idea of taking only the current output sample into their interactions
instead of all output samples is proposed under the assumption that the information the current sample has is the most useful of
all other samples; this leads to the computational complexity of the proposed algorithm not being related to the sample size. The
simulation results show that the proposed algorithm significantly reduces the computational complexity by approximately 21 times
for N=20 without noticeable loss of learning performance, which indicates that the proposed criterion and algorithm are more
suitable for practical implementations than the conventional CIP algorithm.
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| . Introduction

Blind algorithms for signal processing or communication
systems are being effectively utilized in overcoming
signal distortion or inter—symbol interference induced
by storage media or communication channels. Blind
algorithms do not need a training sequence to recover
the distorted signal or to restart after a communications
breakdown[1],[2]. This advantage has been increasingly
utilized in computer communication networks and
broadcasting systems[3].

The training of blind adaptive systems has usually
been accomplished by using the constant modulus error
(CME) and the mean squared error (MSE) criterion[4],[5].
Unlike the MSE criterion that utilizes CME energy, ITL
methods introduced by Princepe uses a nonparametric
probability density function (PDF) estimation and
information potential (IP) which measures interactions
among pairs of data samples[6],[7]. It contains higher
order moments of the PDF and is much simpler to
estimate directly from samples than conventional
moments expansions.

The MSE based learning algorithms are known not
to yield sufficient performance in non—-Gaussian noise,
such as impulsive noise environments[6],[8]. On the
other hand, learning algorithms developed from the ITL
methods can break through these obstacles partly due
to the kernel-based PDF estimation and information
potential[6]. The minimum error entropy (MEE)
criterion as one of ITL criteria is a powerful approach
for non—-Gaussian signal processing as well as for
robust machine learning[9],[10]. One of its drawbacks
is that it has been designed only for supervised
learning. Another problem is its computational complexity
including double summation operations. Recently a
simplified version of MEE has been introduced by
utilizing only two error samples that contribute mostly
to performance enhancement[11].

Besides the concept of IP, through the extension of
the definition of correlation function for random
processes, the generalized correlation function called
correntropy has become another performance criterion
of ITL and developed to be applied to blind signal
processing[12]. The correntropy is related to the
probability of how similar two random variables are in
the neighborhood of the joint space[13].

In this paper, in order to develop efficient and
unsupervised learning algorithms which are robust in
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impulsive noise environment, we briefly explain blind
algorithms based on correntropy and IP, and then
propose a simplified IP criterion and its related
algorithms for computational complexity reduction
without noticeable loss of performance.

Il. Blind Performance Criteria based on Gaussian
Kernel

With a kernel size o, the Gaussian kernel is defined

as
2

1 x
G,(z) = Uﬁﬁexp( oo? ) (1M
Given N(sample size) data samples {z;}, the
correntropy function Vy [n] with sample distance or

time distance » is described as follows[12],[13].

1
mzkl\;n Gz, —x,_,) 2)

VX[W] =
When it comes to dissimilarity measure as a kind of
error concept, the squared difference Cqy between the

transmitter correntropy Vs[n] and that of the receiver
Vy[n] can become a cost function or a performance
criterion as proposed in[12]. We refer to this Cgy as

MSCD (mean squared correntropy distance) in this
paper for convenience's sake.
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On the other hand, the information potential (IP) can
be a kind of performance criterion. The concept of
information potential may be summarized as follows.
When we see the value of a given data sample z; as
the location of the data axis x, the kernel function
Gypo(x;—x;) for two data samples x; and z; on the axis
produces exponential decaying outcomes regarding the
distance between z; and z;. This can be interpreted as
the Gaussian kernel G,,(z;—z;) plays a role as a
potential field that induces the interactions between
the two particle-like data samples x; and z;. The
perspective regarding a data sample as a particle with
information in an information potential field becomes
the basis of the concept of information theoretic



learning ITL)[6],[7].
Then tY,G,,(z;—z;) is corresponding to the

towards to z; and

1

summed interactions

1
¥ N 2N G p(x;—2;) becomes the averaged total

interaction among all data samples on the x axis. This
function of total interactions is called information
potential[6]. That is, the information potential 7Py for

a given set of samples {z,z,...2,} can be written as

1
[PXXZFZIZIZ‘j]\ile/Z(xji‘ri) (4)

We may notice in (4) that when the samples are
placed close to each other the potential energy
becomes high and vice versa.

The information potential can be expressed with a
probability density function fy(z) based on kernel

density estimation method[14].

F3@)= LY, G o) ®)

Then, [ f%(x)dz becomes

1
fffY(x)dx:Ffvazng(x*xl»)ZjvzlGd(x*x/)dx

1
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6)

Therefore,

Pyy= [ filz)dx @)

For the two different densities f4(s) and fy(y), the
cross information potential (CIP) called information
potential CIPgy is defined in[7] as

CIPgy_ [ fs(a)f y(a)da 8)

We can notice that when the samples s; and y,; are
placed close together the information potential CIPgy
becomes high and vice versa.

For application to blind equalization in communication
with M—ary modulation schemes, technology, the
density f4(s) can be constructed from the transmitter
symbol set S= {4, 4,... Ay} and density f,(y) is from
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the receiver output samples Y= {47, 1 ¥p—n+1)-
When the transmitted symbol at time k is assumed to
be randomly chosen with equal probability, f4(s) and
fy{y) can be obtained

fs(s):%[5(37141)+a(sz2)+...+a(szM)] (9)

where 6(s) is the Dirac—delta function on the s axis.
And through the kernel density estimation method
with the sample size NV as in (5) f,(y) becomes

Foly) = %z;;k,wq,(y—m (10)

Then the equation (8) using (9) and (10) can be
rewritten as

11
C[PSYZWWZVIKZI e v G4, ) (11)
The two ITL-type criteria, Cgy, of MSCD, and CIPg,

of CIP can be summarized as in (3) and (11),
respectively.

For comparison’s sake, the common blind criterion
Py for the constant modulus algorithm (CMA) can be

rewritten as

where R, = Els,I*]/ Ells,[*]

Minimizing this criterion leads to force equalizer
output powers to have the same value, R,. In M—ary
modulation schemes, the power of each desired signal
The force
minimizing P, will lose its target direction because

has different values. induced from

the cost function forces the equalizer outputs to obtain
the same output power R, in spite of each symbol’s
desired power being different from each other. This
may lead the CMA cost function R, to ill-convergence

more severely in impulsive noise situations.

lll. Proposed CIP Criterion

The fact that the information potential /Pyy in (2) is

the interaction energy among all data samples on the x
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axis leads us to view the CIP in (11) as the
interactions between the M symbol points and N
output samples {y,7, 14— y+1)-

Instead of considering all the interactions of N
output samples towards to the symbol points, we may
consider only that of y, under the assumption that the
information the current sample y, has is the most
useful of all other samples. This assumption will be
verified through experiment in Section V.

So, we intend to consider only the interactions
between y, and all symbol points {4, 4,... Ay}. Then
the simplified CIP becomes

1

Y:MZM

m=

SCIPg (A, —v,) (13)

This proposed (13) will be referred to as SCIP
(simplified CIP) in this paper. It may be needed to
observe performance difference between CIPg, and its

simplified version SCIPs, through the experiment in
Section V.

IV. Blind Learning Algorithms

For the input vector X, = [z, 2, 12, .2, ;)" and
weight W,"= [w, w0, 10,50, ;] at time k, the linear
combiner produces the output y, = W;'X,. The MSCD

algorithm for weight update is obtained by minimizing
Csy in (3) with a step size uyep-

Hpsco M p
Wy =W,—————2 M v, ., (Vs
kt+1 k (N*n+l)62 1 k— N+ S[ }

- VY["})Go‘(yj _‘7/1'7”)(.7/{_.7/{7,1)()({_)({7%)

(14)

The CIP algorithm is obtained by maximizing CIPgy
in (11) as

Wy =W+

ﬂCJPMNGZ Zz’k:kaJrl ):724:1(147,2 *yi)
* Gd(Am_yi) + X

1

Likewise, maximizing SCIPgy leads to SCIP algorithm

with a step size pgyp as
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9 M
Wi1 = Wt rsap Z (4, =)

Mdz m=1
* Ga(Amiyk) * X,

(16)

For comparison, the CMA algorithm (CMA) obtained
from minimizing P, with respect to system weights

can be written as
W =

W, — ttcaralyy, (‘yk|2_R2) - X, (17)

It may be worthwhile to observe different
performance among CMA in (12), MSCD in (3), CIP in
(11) and its simplified version SCIP in (13) through the
experiment in Section V.

V. Simulation Results and Discussion

In this Section, the learning performance of the MSCD
algorithm and its simplified version SCIP is analyzed in
the experiment of a base-band communication system
as shown in Fig. 1.

Communication
Symbol —»|  channel
generation H(z) B
A
s e} Impulsive v
noise 7,
4
9utput Vi Y, = WkTXk ‘Input
w % ‘x
k

Blind learning
algorithms

Fig. 1. A Base-band communication system for the
experiment

For the data generation of 4 symbols (M =4), one of
{Al = 1.A2 = LAS = 3,A4 2*3}

(equiprobable) and sent at time k. The transmitted

is randomly chosen

symbol is through the communication channel H(z)

where the symbol is distorted by intersymbol

interference and then corrupted by impulsive noise.



The receiver is equipped with a linear combiner
v, = W,'X, with L=11. The transfer function H(z) is
in (18) as in[8].

H(z) =0.304+0.903z 1 +0.304z 2 (18)

The impulse response of (18) corresponds to

h(t) =0.3048(¢t) +0.9038(t — 7) +0.3046(¢ —27)
(19)

where T is the symbol period.

The impulsive noise comprises impulses and white
Gaussian noise. The impulses are generated as
in[12],[13] by Poisson process with variance 50 and
occurrence rate 0.03. The variance of the Gaussian
noise is set 0.001. A sample of the impulsive noise is
shown in Fig. 2.

15

Amplitude (volt)
! o

(&)
1

. . . . .
0 2000 4000 6000 8000 10000
Number of samples

Fig. 2. A sample of impulsive noise (a sample of random
impulsive noise generated by the method[12])

The system weights of the CIP and SCIP are
updated with the common step size g yp_ttgqp = 0.005
and the kernel size 0=0.6. The step sizes for CMA
and MSCD, g4 and sy, are set 0.01 and 0.00001,
respectively. The kernel size for MSCD is 2.8 and the
sample size N=20.

In Fig. 3 showing the MSE learning curves we may
observe that the learning curve of CMA in (3) does not
converge below -7 dB which indicates that CMA is
inappropriate. But the CIP or SCIP algorithms show
fast and stable convergence to around —27 dB. The
MSE learning curves of the proposed SCIP and the

Simplified Blind Algorithms based on Cross-Information Potential

conventional CIP result in similar performance with
only slightly different steady state MSE of -2.7 dB and
—-2.75 dB, respectively. That difference can be viewed
as negligible in most communication systems which
usually demand performance difference of above 3 dB
in order for a new system to be judged as better or

superior.
4 ; . ; . ; . ;
2 "J“V‘
0 Y b hm
2 \ Ve(
4 \ .
6 \ ]
P~ | ] ]
m -8 ‘
2 10 4 Q .
12 \ O O
= 14 \ ]
“C_) 4
2 12 \ ——CMA | T
> . Y, —o—MSCD | 7
=2 —a-CP | 1
- k —7— SCIP ]
24 ‘,‘ ]
26 Wty oot o 1
» T IV T AR
-304 . ; . ; . ; . ; . ]
0 2000 4000 6000 8000 10000

Number of samples (iterations)
Fig. 3. MSE learning curves

We may see that this property of performance
equality that the SCIP has reveals that the interactions
between y, and symbol points {ALAZ’...,AM} are enough
for the weight update to count in rather than considering
all the interactions of (9,7, 1%, ni1) and the
symbol points {4, 4, .. A,,}.

Besides this property, the proposed SCIP algorithm
has a figure of merit that its computational complexity
in multiplication is remarkably reduced. For the sake
of convenience of comparison, 2/¢° and the Gaussian
kernel G,(A4, —y;) which commonly exist in both
methods, CIP in (10) and SCIP in (11), are treated as
constants.

The block-processing method (10) demands 3MN
multiplications at each iteration time while the proposed
method (11) requires 3}/ multiplications. It is important
that the computational complexity of the proposed one
is not related with the sample size since a large
sample size is preferable in order to guarantee a
desired level of accuracy[15].

Fig. 4 shows the number of multiplications with
respect to sample size and it is apparent that the
proposed SCIP algorithm is more appropriate to
practical implementations.
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Fig. 4. Number of multiplications required for CIP and SCIP
with respect to the sample size V

050 1 1 1 1 1 1 1
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] — A\
0.40 4 —B

1 —0~C

Probability density
o o o o o
. 2.8.¢.¢

0.104

0.05+

0.00 T T T T T T T
-04 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04

Error value

Fig. 5. System error distribution for several interactions (A:
between y, and the symbol points, B: between y,, v, _;

and the symbol points, C: between y,, v,_,, ¥,_, and
the symbol points)

On the other hand, the assumption that the current
output y, has more useful information than all other
samples {9, 1.y, y+1) can be verified through the
performance comparison of the system error distribution
which depicted in Fig. 5. In Fig. 5, the error distribution
of case A which considers only the interactions
between the current output y, and the symbol points
{4, A,.. Ay} has a bell shape distribution narrow
enough to gather most error samples near zero. The
contribution to error performance enhancement by
adding the interactions between the past output y,_,
and the symbol points is insignificant as we can see in
the case B. We can also observe the similar results in
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case C where the interactions between y, ;, ¥, , and
the symbol points are added. This indicates that the
information the current output sample y, has is the

most useful of all other outputs.

Qutput voltage

T T T T T T
2000 3000 4000 5000 6000 7000 8000
Number of samples

(a)

Center-weight value

T T T
0 1000 6000 7000 8000

2600 30IOO 4600 5{500

Number of samples (iterations)
(b)

Fig. 6. Output signal (a) and center-weight trace (b)

It is noticeable how the impulsive noise is processed
in the learning algorithm SCIP. The resulting output
signal in Fig. 6(a) shows that the output samples
gather on their corresponding target symbol points
after convergence though the impulses are not removed.
The weight trace (the center weight is chosen for
convenience’s sake) in (b) verifies the robustness of
SCIP by showing that it converges its steady state
value without any disturbance or fluctuations even

under the strong impulsive noise.

VI. Conclusion

For overcoming the multipath channel distortions

748



and non-Gaussian noise effects, many performance
criteria and related blind algorithms have been developed
based on the information potential concept which was
built onprobability estimation. Despite its superior
performance in non—-Gaussian impulsive noise, the
algorithms require heavy computational burden due to
a large sample size for guaranteeing a desired level of
accuracy of probability estimation. The proposed
performance criterion and weight update algorithm
significantly reduces the computational complexity
without noticeable loss of performance in unsupervised
learning and impulsive noise situations. This indicates
that the proposed algorithm can replace the supervised
MEE algorithms for unsupervised learning not needing
training data and the CIP algorithm for reduced complexity.
We may conclude thatthe proposed SCIP algorithm can
be more appropriate to practical implementations than
the conventional CIP algorithm.
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