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[Abstract]

In this study, an efficient attention deficit hyperactivity disorder (ADHD) diagnosis system based on structural MRI is proposed.
This system leverages features extracted from structural MRI of seven brain regions—the Amygdala, Caudate, Cerebellar Vermis,
Corpus Callosum, Hippocampus, Striatum, and Thalamus—available in the ADHD-200 database. These features, identified using
region-of-interest (ROI) analysis, are employed to train an efficient classifier capable of distinguishing between three subtypes of
ADHD: ADHD-C, ADHD-H, and ADHD-I, in addition to typically developing controls. For effective training, approximately
40,000 extracted ROI features were preprocessed by a specially tailored ROI feature selection method based on the genetic
algorithm. This process selected a subset of the most significant ROI features. The chosen subset of ROI features was then used
to train an efficient ADHD classifier employing the Extreme Learning Machine. Experimental results clearly demonstrate that the
proposed approach outperforms existing techniques in terms of overall testing accuracy.
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| . Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is
neuropsychiatric disorder common among people of 7
to 21 years of age [1]. Recent studies specify three
main types of ADHD: hyperactive (ADHD-H), abnormal
impulsive (ADHD-I), and combined (ADHD-C). ADHD
can be diagnosed by behavioral analysis and can be
efficiently treated if ADHD diagnosis is made at an
earlier stage. According to recent reviews, ADHD may
have genetic [2], or environmental nature [3], but the
origin of ADHD is not fully clear. Hence, new methods
for ADHD diagnosis at an early stage must be
developed, and may lead to a better understanding of
the nature of ADHD.

Presently, ADHD diagnosis is usually based upon
symptoms analysis [4]. Such methods are not always
accurate and may be affected by human mistakes.
Recent advances in medical imaging techniques,
coupled with advanced machine learning allow a deep
structural analysis of human brains affected by ADHD.
Researchers use MRI (magnetic resonance imaging)
[3], and SPECT (single-photon emission computed
tomography) [5],[6]. These high precision medical
imaging techniques highlight brain regions affected by
ADHD and provide extra information for further
analysis.

SPECT [6], or single-photon emission computed
tomography, is an efficient medical imaging tool, which
uses radioactive materials to highlight abnormal brain
regions. MRI, or magnetic resonance imaging, gives
high precision images of the human brain, and does not
use harmful radioactive materials. MRI can be used
multiple times without any health limitations, and
allows research on dynamic brain processes. Recent
deep analysis of the ADHD patients using MRI has
highlighted abnormalities in various brain regions, such
as the basal ganglia and frontostriatal regions [15],
corpus callosum [13], amygdala and thalamus areas
[9], cerebral volume [3], temporoparietal lobes [7],
Cerebellar vermis [14], caudate [11], striatum [16],
hippocampus [8],[12], and amygdala [10], among
others.

ADHD symptoms include cognitive and emotional
instabilities. Thus, the brain regions responsible for
various emotions and cognitive processes associated
with emotions may be affected by ADHD. The brain
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areas responsible for emotions and cognitive processes
are: the Amygdala, Caudate, Cerebellar Vermis, Corpus
Callosum, Hippocampus, Striatum, and Thalamus. Brain
regions associated with human emotions were recently
intensively studied in [8], [9], and [10]. The amygdala
is responsible for accumulating emotions associated
with fear [10]. The caudate is more complex and
responsible for learning, short-term memory, planning
of movements, motivations, and various emotions [11].
The hippocampus is responsible for the physiology of
the brain as well as cognitive functions such as
producing hormones, long—term memory, and various
different kinds of responses [8],[12]. Research has
already demonstrated the importance of the amygdala,
caudate and hippocampus for human emotions and for
ADHD research. According to recent studies, ADHD
may also affect other brain regions. Thus, in this
research we combine data from the Amygdala, Caudate,
Cerebellar Vermis, Corpus Callosum, Hippocampus,
Striatum, and Thalamus brain regions, and build an
efficient ADHD classifier based on a specially tailored
Region-of-Interest Feature Selection Method coupled
with the Extreme Learning Machine. The proposed
ADHD classifier shows higher classification accuracy
compared to other state—of-the—art methods.

Classification of ADHD subtypes based on applying
advanced machine learning to structural and functional
MRI data has been widely studied recently. In [25]
authors used a complex cognitive neuro—fuzzy
interface for efficient classification of the 3 subtypes
of ADHD (ADHD-C vs. ADHD-H vs. ADHD-I) and
typically developing controls (TDC) taken from the
ADHD-200 database. Later, in [27] authors used
features extracted from Hippocampus and improved
classification performance. In [20] authors picked the
Amygdala and Cerebellar vermis to extract features
and build an efficient ADHD classifier. In [28] authors
reduced the number of samples from the ADHD-200
database and built an extreme learning machine (ELM)
classifier with high accuracy. In [29] authors proposed
using multi kernel learning (MLK) to build an efficient
classifier with high accuracy. The famous deep
learning technique was used in [31] and [32] for
accurate ADHD classification.

In this paper we propose a complex analysis of seven
brain regions from the ADHD-200 database (namely,
the Amygdala, Caudate, Cerebellar Vermis, Corpus
Callosum, Hippocampus, Striatum, and Thalamus) using
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a tailored region—of-interest Feature Selection Method
(roiFSM). The ROI procedure extracts around 40000
features from the MRI of the seven examined brain
regions available in the ADHD-200 database. The direct
use of 40000 features to build an efficient classifier
would be a big challenge due to redundancy and
extreme complexity of the classification problem.
Hence, a new method which efficiently deals with a
large set of features to build an accurate classifier is
needed. In this paper, we proposed a region—of-interest
Feature Selection Method (roiFSM) - a smart feature
reduction technique, which helps to build an efficient
classifier for classification problems with a large
feature space.

This paper is organized as follows: Section 1 is the
introduction, in Section 2 the ADHD-200 database is
discussed in detail, Section 3 introduces the proposed
Method,
experimental results are presented in Section 4, and

region—-of-interest Feature Selection

Section 5 concludes the paper.

II. ADHD-200 database

ADHD-200 [17] is the world’s biggest MRI database
for ADHD research. ADHD-200 data was collected by
many medical institutions all over the world, and
includes MRI scans of 941 persons. ADHD-200
collects both structural and functional MRI. Among the
941 persons available in the ADHD-200 database, 581
are typical developed controls (TDC) or persons
without ADHD, and the remaining 360 are ADHD
patients: 137 with ADHD-I (inattentive ADHD), 13 with
ADHD-H (hyperactive ADHD), and 210 with ADHD-C
(combined inattentive and hyperactive ADHD). In this
paper MRI data from seven brain regions (Amygdala,
Caudate, Corpus
Hippocampus, Striatum, and Thalamus) for all available

Cerebellar Vermis, Callosum,
941 patients have been used for testing.

The original ADHD-200 database is divided into 770
training samples (487 TDC, 161 ADHD-C, 11
ADHD-H, and 111 ADHD-I: 290 females and 480
males) and 171 testing samples (94 TDC, 49 ADHD-C,
2 ADHD-H, and 26 ADHD-I: 65 females and 106

males).

1) ROI: region—of-interest

The Region-of-Interest ROI method is used to
extract relevant features from MRI for further analysis.
In this paper, the ROl was implemented following the
Burner pipeline, which contains three main steps: the
SMP or Statistical Parametric Mapping [21] step which
separates gray matter and white matter, the data
normalization step using DARTEL (Diffeomorphic
Anatomical Registration Through Exponentiated Lie
Algebra) [22], and the transformation step in which
each generated image is transformed into a space of
population averages. The final step of the Burner
pipeline generates Region—of-Interest masks using the
Pickatlas tool [23].

In this
(region-of-interest) method is used to extract a set of
41721 ROI features from the Amygdala, Caudate,
Cerebellar Vermis, Corpus Callosum, Hippocampus,

paper, the Burner pipeline ROI

Striatum, and Thalamus. The Burner pipeline ROI
method 1050 ROI
features from the Amygdala, 3904 ROI features from
the Caudate, 6358 ROI features from the Cerebellar
Vermis, 8536 ROI features from the Corpus Callosum,
6076 ROI features from the Hippocampus, 9359 ROI
features from the Striatum, and 6438 ROI features
The final set of 41721 ROI
features is used in the proposed region—of-interest
Feature Selection Method (roiFSM), which searches
for a subset of best features for training of an accurate

(region-of-interest) extracts

from the Thalamus.

ADHD classifier using the Extreme Learning Machine.

ll. Proposed Efficient

Technique

ADHD  Diagnostic

The proposed region-of-interest Features Selection
Method (roiFSM) is a key component in the proposed
accurate ADHD diagnosis system based on structural
MRI. The roiFSM reduces the unified set of 41721
features extracted from the seven examined brain
regions (Amygdala, Caudate, Cerebellar Vermis, Corpus
Callosum, Hippocampus, Striatum, Thalamus) and trains
an accurate ADHD classifier using the Extreme
Learning Machine. The framework of the proposed
ADHD diagnosis system is presented in Fig. 1.

http://www.dcs.or.kr
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Fig. 1. Framework of the proposed efficient ADHD
diagnostic system

The proposed region-of-interest Feature Selection
Method (roiFSM) has two major steps: a preprocessing
step and a multiregional brain analysis step. In the
preprocessing step, roiFSM deals with features
extracted from each examined brain region separately,
and the most relevant local ROI features for ADHD are
selected. In the second multiregional brain analysis
step roiFSM searches for relevant ROI features among
all available 41721 ROI features extracted from the
In the final
roiFSM produces a subset of ROI features from all 7

seven examined brain regions. step,
brain regions most relevant for ADHD. This selected
set of features is used then to train an efficient ELM
classifier. The detailed framework of the roiFSM is
presented in Fig. 2. Detailed explanations about the
preprocessing step and multiregional brain analysis
step are given below.

The proposed roiFSM is a modified version of the
well-known Genetic Algorithm, adapted for ADHD data.
roiFSM uses specially tailored Random Balanced
Crossover and Mutation. In the framework presented in
Fig. 2, roiFSM searches for subset of ROI features in the
features set S, chosen from one of the seven examined
Amygdala, or S
Striatum, etc.) or a combination of all seven brain region

together (S = Amygdala U Caudate U Cerebellar

brain regions (for example S

Vermis U Corpus Callosum U Hippocampus U
Striatum U Thalamus).
initial
population #1 population #2 population #3 population #N
BY1,fit(BY.1) B31,fit(B31) BS1,fit(B%1) BS 1, fit(BY1)
N Top-10
BS..fit(B32) s BS..fit(B32) BS,.fit(B5) B fi(BY2)
" Mutati
Bia/fit(BTa) 9 9 B3a.fit(B23) 9 9 BEafit(B32) | ...y Biaft(ERa)
BS 4 fit(BS) BS.fit(B34) B34fit(B3.4) B4 fit(BY.4)
BY o fit(B ) B3 fit(B3) B3, fit(BS,) B fit(BS )

Fig. 2. Framework of the region-of-interest feature
selection method for brain region S.
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The binary vector B, is a solution for roiFSM,

and
skipped features by a logical “0” (See example in Fig.

which highlights chosen features by a logical “1”,

3.). Here S is the name of the features set, k is a
population index, and / is the solution index in
population k& Each population in roiFSM contains n
solutions (2 = 100). The initial population B, is built
using binary vectors generated by allocating 100-200
logical “1” randomly in the vector. fzt( X Z) is a fitness
BS

., creates a

function which uses the binary vector

reduced set of features from set S, trains an ELM
classifier, and uses the overall testing accuracy as a
“fitness”. After collecting n fitness values the current
population is updated by copying the Top—-10% of the
solutions to new generation, and generating the rest of
the solutions using “Selection”, “Random Balanced

Crossover” and “Random Balanced Mutation” as
described below. For each newly generated solution
BS, the fitness function fit(B?) is processed, and
fitness value is obtained. roiFSM updates population
which

in terms of fitness for the last 10

until a stopping criteria 1S met, 1S no

improvements
generations.

features set S

[Sl—=]

[Sl=]

[Sl{=]
EM =]

binary vector Bi,

reduced
features set

[l =le—H=]
[l =Je—]

a
ELM

fitness
f——o

Fig. 3. Fitness function

“Selection method” in the Genetic Algorithm selects
one candidate from the current population based on its
fitness value, such that solutions with higher fitness
have higher chance to be picked. In this paper, the
[24]

geometric ranking method defines the probability of

geometric ranking method was used. The
selection for each solution based on the index of this
solution in a set of sorted solutions. A detailed
explanation of the geometric ranking method is given
n [24].

“Random Balanced Crossover” is a key component
of the proposed roiFSM. Crossover in the Genetic
Algorithm exchanges genetic information between two
which

solutions selected by “Selection method”,
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mimics genetic crossover in nature. Crossover in
nature is responsible for random gene exchange
between two parents during reproduction and plays a
critically important role for survival of a population.

By

nnonhnhnnononEa

& [ RIR] I - [0 Mgﬁb
1,3,4,5,6,7,9,11
B indices Jjoint mdrceH

12457911 |——] 11.23445567.7.991111 |
Il

joint indices

Random split
ke [0:0.5]
k=029

[ 123445770111 Je—

By indices

4
e
ORI - 0]

Fig. 4. Random balanced crossover

By

The Genetic Algorithm uses the adaptation of
powerful crossover procedures from nature to solve
various complex engineering problems, where
analytical solutions are impossible to find. In the
roiFSM the proposed “Random Balanced Crossover”
creates a new solution by recombining logical “1”s
extracted from two parents’ solutions, B, and B,
selected by “Selection method” (see Fig. 4). In the
first step, the “Random Balanced Crossover” extracts
the indexes of logical “1”s from parent solutions B
and B,. In the presented example (Fig. 4.) the set “5,
indices” is {1,2,4,5,7,9,11} and the set “B, indices” is
{1,3,4,5,6,7,9,11}. The set “joint
{1,1,3,4,4,5,5,6,7,7,9,9,11,11}.  The second step

randomly splits the “joint indices” set with split

indices” is

coefficient k10;0.5]. The split coefficient is selected
randomly each time crossover is lunched. In the
presented example (see Fig. 4.) the split coefficient is
k = 0.29, which means 29% of indices from “joint
indices” must be discarded. The “Random Balanced
Crossover” randomly choses 29% of indices from
“joint indices” and discards them. The set of remaining
indices is {1,3,4,4,5,7,7,9,11,11}. In the third step, the
duplicated indices are discarded. The final “B,
indices” set is {1,3,4,5,7,9,11}. Finally “Random
Balanced Crossover” creates a new binary vector B,
using indices from “ By, indices”.

The proposed “Random Balanced Crossover” in the
roiFSM framework has few significant advantages
compared to other popular crossovers presented in
literature. The “Random Balanced Crossover” modifies
only logical “1”s from binary vectors B, and B,, which

always link to meaningfully selected features for use in
training an ELM classifier. Random split in the
“Random Balanced Crossover” gives good control over
the number of logical “1”s in a new binary vector, By.
The remove duplicates step coupled with the random
split of duplicated indices means that duplicated
indices have a higher chance to pass random split
(indices 1,4,5,7,11 in Fig. 4.) and lower chance to be
discarded (index 9). This combination of benefits of
the “Random Balanced Crossover” significantly speeds
up the searching process of the roiFSM and helps to
find an optimal solution in reasonable time.

“Mutation” is another critical component of the
Genetic Algorithm, which mimics genetic mutations in
nature. Mutation in nature gives species the possibility
to acquire novel characteristics, which may/or may not
produce significant improvement. Such improvements
may be impossible to achieve by crossover. Only the
combination of crossover and mutation enables
survival in nature. The mutation operator in the
Genetic Algorithm generates a solution with randomly
modified genes. roiFSM uses Random Balanced
Mutation which generates a new solution with 50 — 200
logical "1”s allocated randomly.

roiFSM preprocessing step: In the preprocessing
step roiFSM searchs for the optimal subset of features
in each brain region separately. roiFSM creates 7 sets
of best solutions with highest fitness corresponding to
each brain region: Amygdala, Caudate, Cerebellar
Vermis, Corpus Callosum, Hippocampus, Striatum, and
Thalamus. The roiFSM crossover probability is 80%
and mutation probability is 20% in each population.
The population size is n = 100, and the stopping
criteria is no fitness improvement for the last 10
populations.

roiFSM multiregional brain analysis step: In the
multiregional brain analysis step features from all
seven examined brain regions are used to build a
unified set of 41721 ROI features. To speed up the
searching process of the Genetic Algorithm the best
solutions from preprocessing step are transferred to
the roiFSM: multiregional brain analysis step. The
Genetic Algorithm settings for roiFSM: multiregional
brain analysis step are: crossover probability 80% and
mutation probability 20%, population size n = 500, and
stopping criteria is no fitness improvement for the last
50 populations.

http://www.dcs.or.kr
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IV. Extreme Learning Machine

Extreme Learning Machine is the machine learning
tool which is used to train an ADHD classifier for 4
classes: 3 subtypes of ADHD (ADHD-I, ADHD-H and
ADHD-C) and typical developed controls TDC. The
ELM 1is a classical one hidden layer feed-forward
neural network with Gaussian neurons where input
weights are assigned randomly, and output weights are
calculated analytically [18]. The bias of the hidden
neurons is assigned randomly. For more details about
ELM refer to [18].

V. Experimental Results

The proposed roiFSM was tested with all available
data from the ADHD-200 database [17]. 941 patients
were efficiently classified and the experimental results
are provided in this Section.

The roiFSM: multiregional brain analysis step
defines the best set of 1328 features from all seven
brain regions: Amygdala (123 features), Caudate (98),
Cerebellar Vermis (234), Corpus Callosum (265),
Hippocampus (196), Striatum (201), and Thalamus
(211). The selected set of ROI features was used to
train an ELM classifier with overall training accuracy
of 69.57% and overall testing accuracy of 67.06%.

The concept of confusion matrices can be used to
display the classification performance of the best
ADHD classifier created by roifFSM. The confusion
matrix displays a distribution of the correct and
incorrect classifications in respect of the class label.
For the proposed ADHD classification problem, the
size of the confusion matrix is 4 by 4, where 4 is the
number of classes. In the confusion matrix rows link to
the actual class label, and columns link to the
predicted class label. If the ADHD classifier predicts
the class correctly, the predicted class label matches
the actual label and the corresponding cell in the
confusion matrix is updated. In the confusion matrix
correctly classified samples are allocated along the
main diagonal, and incorrectly classified samples are
allocated in other matrix cells. Confusion matrices for
training and testing experiments of the best ADHD
classifier found is presented in Tables 1 and 2.
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Table 1. Training confusion matrix

TDC ADHD-C ADHD-H ADHD-I
TDC 286 112 7 81
ADHD-C 11 132 4 14
ADHD-H 0 0 11 0
ADHD-I 2 1 2 106

For example, in Table 1 the first row displays
distribution of the correct and incorrect samples
classifications of class 1 (TDC). The first number is
286, this number is located in the main diagonal, so
286 is the number of correctly classified TDC samples
among 486. The second number (112) in the first row
represents TDC samples (actual class label is 1) which
were classified as ADHD-C (predicted class label is
2). The third number (7) in the first row represents
TDC samples (actual class label is 1) which were
classified as ADHD-H (predicted class label is 3). The
fourth number (81) in the first row represents TDC
samples (actual class label is 1) which were classified
as ADHD-H (predicted class label is 4). Similarly,
sample distributions for ADHD-C, ADHD-H, and
ADHD-I are presented in the second, third and fourth
rows of the confusion matrix.

Table 2. Testing confusion matrix

TDC ADHD-C ADHD-H ADHD-I
TDC 69 12 1 12
ADHD-C 10 26 2 10
ADHD-H 0 0 2 0
ADHD-I 5 4 0 17

The proposed roiFSM was compared with various
automatic ADHD diagnosis techniques. Many ADHD
classifiers presented in literature focus on the binary
classification problem [19], i.e., ADHD vs TDC. Such
binary classification problem is much simpler
compared to the 4-class problem examined here, and
binary classifiers therefore should be expected to
show a relatively higher accuracy. The more complex
3 or 4 class ADHD classification problems can be
simplified by reducing the number of available
samples, which makes problems easier to solve and
leads to higher classification accuracy. The examined
four—class classification problem is much harder in

nature and needs more sophisticated machine learning
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tools.

The four-class ADHD classification problem was
[25] by
Neuro—Fuzzy Interface System; authors reported a
testing accuracy of around 56%. In [27] a feature

solved in using a Meta—-Cognitive

selection approach helped to improve the accuracy to
58,6%. Both methods used features extracted from
Hippocampus brain reg ion only. In [26] authors used
features extracted from the visual cortex brain

regions, cingulate cortex, prefrontal cortex and
reduced set of samples, and achieved testing accuracy
of around 35.19%.

Among ADHD subtypes, ADHD-H has far fewer
samples in the database than ADHD-I and ADHD-C,
the ADHD

unbalanced. The ADHD classification problem can be

which makes subclasses extremely
significantly simplified by removing the ADHD-H class.
The three—class classification problem thus obtained,
i.e., TDC vs. ADHD-I vs. ADHD-I is well researched.
In [28] the three-class ADHD classification problem
was solved for a reduced number of samples. Authors
achieved testing accuracy of about 60.78%. In [30] the
Multi-Region Risk-Sensitive Cognitive Ensembler
solved the same three-class classification problem for
all available ADHD-200 samples and achieved a testing
accuracy of about 86%.

Among all methods cited above, only the methods
presented in [25] and [27]
ADHD classification problem using all available
ADHD-200 samples (770 training samples and 171

testing samples). Thus, fair comparison of the method

solved the four-class

in this paper is only possible with the methods of [25]
and [27]. The proposed roiFSM outperforms these
methods by 10.98 % and 8.38% respectively, in terms
of overall testing accuracy.

VI. Conclusion

The proposed region—-of-interest Features Selection
Method efficiently classifies three subtypes of ADHD
(ADHD-C, ADHD-I, ADHD-H) and TDC. The roiFSM
searches for the most significant ROI features in seven
brain regions: Amygdala, Caudate, Cerebellar Vermis,
Corpus
Thalamus.

Hippocampus, Striatum, and
the roiFSM defines an optimal
subset of 1328 ROI features from all seven brain

Amygdala (123 features), Caudate (98),

Callosum,
Finally,

regions:

481

Cerebellar Vermis (234), Corpus Callosum (265),
Hippocampus (196), Striatum (201), Thalamus (211).
The selected set of ROI features was used to train an
ELM classifier with overall training accuracy 69.57%
and overall testing accuracy 67.06%. Experiments
clearly indicate the advantage of the proposed roiFSM
In comparison to existing techniques presented in the
literature.

The proposed region-of-interest Features Selection
Method can be improved further by using a more
advanced framework of the Feature Selection Method
and by using more efficient crossover and mutation.
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