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[요    약] 

본 논문은 Structural MRI를 기반으로 한 효율적인 주의력결핍 과잉행동장애(ADHD) 진단 시스템을 제시한다. 이 시스템은 

Region-of-Interest(ROI) 접근 방식을 사용하여 ADHD-200 데이터베이스에 존재하는 7개 뇌 영역(Amygdala, Caudate, Cerebellar 
Vermis, Corpus Callosum, Hippocampus, Striatum, and Thalamus)의 Structural MRI에서 특징들을 추출한다. 추출된 특징들을 활용

하여 ADHD를 세 가지 하위 유형(ADHD-C, ADHD-H, ADHD-I)와 TDC(Typical Development Controls)을 분류하기 위해 효율적인 

분류기의 훈련을 시도한다. 효율적인 훈련을 위해 유전 알고리즘을 기반으로 특별히 맞춤화된 ROI 선택 방법(roiFSM)을 통해 

~40000개의 추출된 ROI 세트를 처리하고 가장 중요한 ROI의 하위 세트를 선택한다. 선택된 ROI 하위 집합은 Extreme Learning 
Machine을 사용하여 효율적인 ADHD 분류기를 훈련한다. 실험 결과는 제안된 본 접근 방식이 전반적인 테스트 정확도의 관점에

서 기존 기술보다 우수한 성능을 지닌다는 점을 분명하게 보여준다.

[Abstract] 
In this study, an efficient attention deficit hyperactivity disorder (ADHD) diagnosis system based on structural MRI is proposed. 

This system leverages features extracted from structural MRI of seven brain regions—the Amygdala, Caudate, Cerebellar Vermis, 
Corpus Callosum, Hippocampus, Striatum, and Thalamus—available in the ADHD-200 database. These features, identified using 
region-of-interest (ROI) analysis, are employed to train an efficient classifier capable of distinguishing between three subtypes of 
ADHD: ADHD-C, ADHD-H, and ADHD-I, in addition to typically developing controls. For effective training, approximately 
40,000 extracted ROI features were preprocessed by a specially tailored ROI feature selection method based on the genetic 
algorithm. This process selected a subset of the most significant ROI features. The chosen subset of ROI features was then used 
to train an efficient ADHD classifier employing the Extreme Learning Machine. Experimental results clearly demonstrate that the 
proposed approach outperforms existing techniques in terms of overall testing accuracy. 
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Ⅰ. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is 

neuropsychiatric disorder common among people of 7 

to 21 years of age [1]. Recent studies specify three 

main types of ADHD: hyperactive (ADHD-H), abnormal 

impulsive (ADHD-I), and combined (ADHD-C). ADHD 

can be diagnosed by behavioral analysis and can be 

efficiently treated if ADHD diagnosis is made at an 

earlier stage. According to recent reviews, ADHD may 

have genetic [2], or environmental nature [3], but the 

origin of ADHD is not fully clear. Hence, new methods 

for ADHD diagnosis at an early stage must be 

developed, and may lead to a better understanding of 

the nature of ADHD.

Presently, ADHD diagnosis is usually based upon 

symptoms analysis [4]. Such methods are not always 

accurate and may be affected by human mistakes. 

Recent advances in medical imaging techniques, 

coupled with advanced machine learning allow a deep 

structural analysis of human brains affected by ADHD. 

Researchers use MRI  (magnetic resonance imaging) 

[3], and SPECT (single-photon emission computed 

tomography) [5],[6]. These high precision medical 

imaging techniques highlight brain regions affected by 

ADHD and provide extra information for further 

analysis.  

SPECT [6], or single-photon emission computed 

tomography, is an efficient medical imaging tool, which 

uses radioactive materials to highlight abnormal brain 

regions.  MRI, or magnetic resonance imaging, gives 

high precision images of the human brain, and does not 

use harmful radioactive materials. MRI can be used 

multiple times without any health limitations, and 

allows research on dynamic brain processes. Recent 

deep analysis of the ADHD patients using MRI has 

highlighted abnormalities in various brain regions, such 

as the basal ganglia and frontostriatal regions [15], 

corpus callosum [13], amygdala and thalamus areas 

[9], cerebral volume [3], temporoparietal lobes [7], 

Cerebellar vermis [14], caudate [11], striatum [16], 

hippocampus [8],[12], and amygdala [10], among 

others. 

ADHD symptoms include cognitive and emotional 

instabilities. Thus, the brain regions responsible for 

various emotions and cognitive processes associated 

with emotions may be affected by ADHD. The brain 

areas responsible for emotions and cognitive processes 

are: the Amygdala, Caudate, Cerebellar Vermis, Corpus 

Callosum, Hippocampus, Striatum, and Thalamus.  Brain 

regions associated with human emotions were recently 

intensively studied in [8], [9], and [10]. The amygdala 

is responsible for accumulating emotions associated 

with fear [10]. The caudate is more complex and 

responsible for learning, short-term memory, planning 

of movements, motivations, and various emotions [11]. 

The hippocampus is responsible for the physiology of 

the brain as well as cognitive functions such as 

producing hormones, long-term memory, and various 

different kinds of responses [8],[12]. Research has 

already demonstrated the importance of the amygdala, 

caudate and hippocampus for human emotions and for 

ADHD research. According to recent studies, ADHD 

may also affect other brain regions. Thus, in this 

research we combine data from the Amygdala, Caudate, 

Cerebellar Vermis, Corpus Callosum, Hippocampus, 

Striatum, and Thalamus brain regions, and build an 

efficient ADHD classifier based on a specially tailored 

Region-of-Interest Feature Selection Method coupled 

with the Extreme Learning Machine. The proposed 

ADHD classifier shows higher classification accuracy 

compared to other state-of-the-art methods.

Classification of ADHD subtypes based on applying 

advanced machine learning to structural and functional 

MRI data has been widely studied recently. In [25] 

authors used a complex cognitive neuro-fuzzy 

interface for efficient classification of the 3 subtypes 

of ADHD (ADHD-C vs. ADHD-H vs. ADHD-I) and 

typically developing controls (TDC) taken from the 

ADHD-200 database. Later, in [27] authors used 

features extracted from Hippocampus and improved 

classification performance. In [20] authors picked the 

Amygdala and Cerebellar vermis to extract features 

and build an efficient ADHD classifier. In [28] authors 

reduced the number of samples from the ADHD-200 

database and built an extreme learning machine (ELM) 

classifier with high accuracy. In [29] authors proposed 

using multi kernel learning (MLK) to build an efficient 

classifier with high accuracy. The famous deep 

learning technique was used in [31] and [32] for 

accurate ADHD classification.     

In this paper we propose a complex analysis of seven 

brain regions from the ADHD-200 database (namely, 

the Amygdala, Caudate, Cerebellar Vermis, Corpus 

Callosum, Hippocampus, Striatum, and Thalamus) using 
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a tailored region-of-interest Feature Selection Method 

(roiFSM). The ROI procedure extracts around 40000 

features from the MRI of the seven examined brain 

regions available in the ADHD-200 database. The direct 

use of 40000 features to build an efficient classifier 

would be a big challenge due to redundancy and 

extreme complexity of the classification problem. 

Hence, a new method which efficiently deals with a 

large set of features to build an accurate classifier is 

needed. In this paper, we proposed a region-of-interest 

Feature Selection Method (roiFSM) - a smart feature 

reduction technique, which helps to build an efficient 

classifier for classification problems with a large 

feature space.

This paper is organized as follows:  Section 1 is the 

introduction, in Section 2 the ADHD-200 database is 

discussed in detail, Section 3 introduces the proposed 

region-of-interest Feature Selection Method, 

experimental results are presented in Section 4, and 

Section 5 concludes the paper.

Ⅱ. ADHD-200 database  

ADHD-200 [17] is the world’s biggest MRI database 

for ADHD research. ADHD-200 data was collected by 

many medical institutions all over the world, and 

includes MRI scans of 941 persons. ADHD-200 

collects both structural and functional MRI. Among the 

941 persons available in the ADHD-200 database, 581 

are typical developed controls (TDC) or persons 

without ADHD, and the remaining 360 are ADHD 

patients: 137 with ADHD-I (inattentive ADHD), 13 with 

ADHD-H (hyperactive ADHD), and 210 with ADHD-C 

(combined inattentive and hyperactive ADHD). In this 

paper MRI data from seven brain regions (Amygdala, 

Caudate, Cerebellar Vermis, Corpus Callosum, 

Hippocampus, Striatum, and Thalamus) for all available 

941 patients have been used for testing.  

The original ADHD-200 database is divided into 770 

training samples (487 TDC, 161 ADHD-C, 11 

ADHD-H, and 111 ADHD-I: 290 females and 480 

males) and 171 testing samples (94 TDC, 49 ADHD-C, 

2 ADHD-H, and 26 ADHD-I: 65 females and 106 

males).  

1) ROI: region-of-interest

The Region-of-Interest ROI method is used to 

extract relevant features from MRI for further analysis. 

In this paper, the ROI was implemented following the 

Burner pipeline, which contains three main steps: the 

SMP or Statistical Parametric Mapping [21] step which 

separates gray matter and white matter, the data 

normalization step using DARTEL (Diffeomorphic 

Anatomical Registration Through Exponentiated Lie 

Algebra) [22], and the transformation step in which 

each generated image is transformed into a space of 

population averages. The final step of the Burner 

pipeline generates Region-of-Interest masks using the 

Pickatlas tool [23].

In this paper, the Burner pipeline ROI 

(region-of-interest) method is used to extract a set of 

41721 ROI features from the Amygdala, Caudate, 

Cerebellar Vermis, Corpus Callosum, Hippocampus, 

Striatum, and Thalamus. The Burner pipeline ROI 

(region-of-interest) method extracts 1050 ROI 

features from the Amygdala, 3904 ROI features from 

the Caudate, 6358 ROI features from the Cerebellar 

Vermis, 8536 ROI features from the Corpus Callosum, 

6076 ROI features from the Hippocampus, 9359 ROI 

features from the Striatum, and 6438 ROI features 

from the Thalamus.  The final set of 41721 ROI 

features is used in the proposed region-of-interest 

Feature Selection Method (roiFSM), which searches 

for a subset of best features for training of an accurate 

ADHD classifier using the Extreme Learning Machine.

III. Proposed Efficient ADHD Diagnostic 

Technique

The proposed region-of-interest Features Selection 

Method (roiFSM) is a key component in the proposed 

accurate ADHD diagnosis system based on structural 

MRI. The roiFSM reduces the unified set of 41721 

features extracted from the seven examined brain 

regions (Amygdala, Caudate, Cerebellar Vermis, Corpus 

Callosum, Hippocampus, Striatum, Thalamus) and trains 

an accurate ADHD classifier using the Extreme 

Learning Machine. The framework of the proposed 

ADHD diagnosis system is presented in Fig. 1.
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Fig. 1. Framework of the proposed efficient ADHD 
diagnostic system

The proposed region-of-interest Feature Selection 

Method (roiFSM) has two major steps: a preprocessing 

step and a multiregional brain analysis step. In the 

preprocessing step, roiFSM deals with features 

extracted from each examined brain region separately, 

and the most relevant local ROI features for ADHD are 

selected. In the second multiregional brain analysis 

step roiFSM searches for relevant ROI features among 

all available 41721 ROI features extracted from the 

seven examined brain regions. In the final step, 

roiFSM produces a subset of ROI features from all 7 

brain regions most relevant for ADHD. This selected 

set of features is used then to train an efficient ELM 

classifier. The detailed framework of the roiFSM is 

presented in Fig. 2. Detailed explanations about the 

preprocessing step and multiregional brain analysis 

step are given below. 

The proposed roiFSM is a modified version of the 

well-known Genetic Algorithm, adapted for ADHD data. 

roiFSM uses specially tailored Random Balanced 

Crossover and Mutation. In the framework presented in 

Fig. 2, roiFSM searches for subset of ROI features in the 

features set S, chosen from one of the seven examined 

brain regions (for example S = Amygdala, or S = 

Striatum, etc.) or a combination of all seven brain region 

together (S = Amygdala ∪  Caudate ∪ Cerebellar 

Vermis ∪ Corpus Callosum ∪ Hippocampus ∪ 

Striatum ∪  Thalamus).

Fig. 2. Framework of the region-of-interest feature 
selection method for brain region S. 

The binary vector   is a solution for roiFSM, 

which highlights chosen features by a logical “1”, and 

skipped features by a logical “0” (See example in Fig. 

3.). Here S is the name of the features set, k is a 

population index, and l is the solution index in 

population k. Each population in roiFSM contains n 

solutions (n = 100). The initial population   is built 

using binary vectors  generated by allocating 100-200 

logical “1” randomly in the vector.  
  is a fitness 

function which uses the binary vector  , creates a 

reduced set of features from set S, trains an ELM 

classifier, and uses the overall testing accuracy as a 

“fitness”. After collecting n fitness values the current 

population is updated by copying the Top-10% of the 

solutions to new generation, and generating the rest of 

the solutions using “Selection”, “Random Balanced 

Crossover” and “Random Balanced Mutation” as 

described below. For each newly generated solution   the fitness function 
  is processed, and 

fitness value is obtained. roiFSM updates population 

until a stopping criteria is met, which is no 

improvements in terms of fitness for the last 10 

generations.

Fig. 3. Fitness function

“Selection method” in the Genetic Algorithm selects 

one candidate from the current population based on its 

fitness value, such that solutions with higher fitness 

have higher chance to be picked. In this paper, the 

geometric ranking method [24] was used. The 

geometric ranking method defines the probability of 

selection for each solution based on the index of this 

solution in a set of sorted solutions. A detailed 

explanation of the geometric ranking method is given 

in [24]. 

“Random Balanced Crossover” is a key component 

of the proposed roiFSM. Crossover in the Genetic 

Algorithm exchanges genetic information between two 

solutions selected by “Selection method”, which 
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mimics genetic crossover in nature. Crossover in 

nature is responsible for random gene exchange 

between two parents during reproduction and plays a 

critically important role for survival of a population. 

Fig. 4. Random balanced crossover

The Genetic Algorithm uses the adaptation of 

powerful crossover procedures from nature to solve 

various complex engineering problems, where 

analytical solutions are impossible to find. In the 

roiFSM the proposed “Random Balanced Crossover” 

creates a new solution by recombining logical “1”s 

extracted from two parents’ solutions,  and  ,  

selected by “Selection method” (see Fig. 4).  In the 

first step, the “Random Balanced Crossover” extracts 

the indexes of logical “1”s from parent solutions  

and  . In the presented example (Fig. 4.) the set “ 

indices” is {1,2,4,5,7,9,11} and the set “ indices” is 

{1,3,4,5,6,7,9,11}. The set “joint indices” is 

{1,1,3,4,4,5,5,6,7,7,9,9,11,11}. The second step 

randomly splits the “joint indices” set with split 

coefficient ∈    . The split coefficient is selected 

randomly each time crossover is lunched. In the 

presented example (see Fig. 4.) the split coefficient is 

k = 0.29, which means 29% of indices from “joint 

indices” must be discarded. The “Random Balanced 

Crossover” randomly choses 29% of indices from 

“joint indices” and discards them. The set of remaining 

indices is {1,3,4,4,5,7,7,9,11,11}. In the third step, the 

duplicated indices are discarded. The final “  

indices” set is {1,3,4,5,7,9,11}. Finally “Random 

Balanced Crossover” creates a new binary vector   

using indices from “  indices”. 

The proposed “Random Balanced Crossover” in the 

roiFSM framework has few significant advantages 

compared to other popular crossovers presented in 

literature. The “Random Balanced Crossover” modifies 

only logical “1”s from binary vectors  and , which 

always link to meaningfully selected features for use in 

training an ELM classifier. Random split in the 

“Random Balanced Crossover” gives good control over 

the number of logical “1”s in a new binary vector,  . 

The remove duplicates step coupled with the random 

split of duplicated indices means that duplicated 

indices have a higher chance to pass random split 

(indices 1,4,5,7,11 in Fig. 4.) and lower chance to be 

discarded (index 9). This combination of benefits of 

the “Random Balanced Crossover” significantly speeds 

up the searching process of the roiFSM and helps to 

find an optimal solution in reasonable time. 

“Mutation” is another critical component of the 

Genetic Algorithm, which mimics genetic mutations in 

nature. Mutation in nature gives species the possibility 

to acquire novel characteristics, which may/or may not 

produce significant improvement. Such improvements 

may be impossible to achieve by crossover. Only the 

combination of crossover and mutation enables 

survival in nature. The mutation operator in the 

Genetic Algorithm generates a solution with randomly 

modified genes. roiFSM uses Random Balanced 

Mutation which generates a new solution with 50 – 200 

logical "1”s allocated randomly.

roiFSM preprocessing step: In the preprocessing 

step roiFSM searchs for the optimal subset of features 

in each brain region separately. roiFSM creates 7 sets 

of best solutions with highest fitness corresponding to 

each brain region: Amygdala, Caudate, Cerebellar 

Vermis, Corpus Callosum, Hippocampus, Striatum, and 

Thalamus. The roiFSM crossover probability is 80% 

and mutation probability is 20% in each population. 

The population size is n = 100, and the stopping 

criteria is no fitness improvement for the last 10 

populations.

roiFSM multiregional brain analysis step: In the 

multiregional brain analysis step features from all 

seven examined brain regions are used to build a 

unified set of 41721 ROI features. To speed up the 

searching process of the Genetic Algorithm the best 

solutions from preprocessing step are transferred to 

the roiFSM: multiregional brain analysis step. The 

Genetic Algorithm settings for roiFSM: multiregional 

brain analysis step are: crossover probability 80% and 

mutation probability 20%, population size n = 500, and 

stopping criteria is no fitness improvement for the last 

50 populations.  
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IV. Extreme Learning Machine

Extreme Learning Machine is the machine learning 

tool which is used to train an ADHD classifier for 4 

classes: 3 subtypes of ADHD (ADHD-I, ADHD-H and 

ADHD-C) and typical developed controls TDC. The 

ELM is a classical one hidden layer feed-forward 

neural network with Gaussian neurons where input 

weights are assigned randomly, and output weights are 

calculated analytically [18]. The bias of the hidden 

neurons is assigned randomly. For more details about 

ELM refer to [18].  

V. Experimental Results 

The proposed roiFSM was tested with all available 

data from the ADHD-200 database [17]. 941 patients 

were efficiently classified and the experimental results 

are provided in this Section.

The roiFSM: multiregional brain analysis step 

defines the best set of 1328 features from all seven 

brain regions: Amygdala (123 features), Caudate (98), 

Cerebellar Vermis (234), Corpus Callosum (265), 

Hippocampus (196), Striatum (201), and Thalamus 

(211). The selected set of ROI features was used to 

train an ELM classifier with overall training accuracy 

of 69.57% and overall testing accuracy of 67.06%.

The concept of confusion matrices can be used to 

display the classification performance of the best 

ADHD classifier created by roiFSM. The confusion 

matrix displays a distribution of the correct and 

incorrect classifications in respect of the class label. 

For the proposed ADHD classification problem, the 

size of the confusion matrix is 4 by 4, where 4 is the 

number of classes. In the confusion matrix rows link to 

the actual class label, and columns link to the 

predicted class label. If the ADHD classifier predicts 

the class correctly, the predicted class label matches 

the actual label and the corresponding cell in the 

confusion matrix is updated. In the confusion matrix 

correctly classified samples are allocated along the 

main diagonal, and incorrectly classified samples are 

allocated in other matrix cells. Confusion matrices for 

training and testing experiments of the best ADHD 

classifier found is presented in Tables 1 and 2. 

 

 TDC ADHD-C ADHD-H ADHD-I

TDC 286 112 7 81

ADHD-C 11 132 4 14

ADHD-H 0 0 11 0

ADHD-I 2 1 2 106

Table 1. Training confusion matrix 

For example, in Table 1 the first row displays 

distribution of the correct and incorrect samples 

classifications of class 1 (TDC). The first number is 

286, this number is located in the main diagonal, so 

286 is the number of correctly classified TDC samples 

among 486. The second number (112) in the first row 

represents TDC samples (actual class label is 1) which 

were classified as ADHD-C (predicted class label is 

2). The third number (7) in the first row represents 

TDC samples (actual class label is 1) which were 

classified as ADHD-H (predicted class label is 3). The 

fourth number (81) in the first row represents TDC 

samples (actual class label is 1) which were classified 

as ADHD-H (predicted class label is 4). Similarly, 

sample distributions for ADHD-C, ADHD-H, and 

ADHD-I are presented in the second, third and fourth 

rows of the confusion matrix.

 TDC ADHD-C ADHD-H ADHD-I

TDC 69 12 1 12

ADHD-C 10 26 2 10

ADHD-H 0 0 2 0

ADHD-I 5 4 0 17

Table 2. Testing confusion matrix 

The proposed roiFSM was compared with various 

automatic ADHD diagnosis techniques. Many ADHD 

classifiers presented in literature focus on the binary 

classification problem [19], i.e., ADHD vs TDC. Such 

binary classification problem is much simpler 

compared to the 4-class problem examined here, and 

binary classifiers therefore should be expected to 

show a relatively higher accuracy. The more complex 

3 or 4 class ADHD classification problems can be 

simplified by reducing the number of available 

samples, which makes problems easier to solve and 

leads to higher classification accuracy. The examined 

four-class classification problem is much harder in 

nature and needs more sophisticated machine learning 
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tools.

The four-class ADHD classification problem was 

solved in [25] by using a Meta-Cognitive 

Neuro-Fuzzy Interface System; authors reported a 

testing accuracy of around 56%. In [27] a feature 

selection approach helped to improve the accuracy to 

58,6%. Both methods used features extracted from 

Hippocampus brain reg ion only. In [26] authors used 

features extracted from the visual cortex brain 

regions, cingulate cortex, prefrontal cortex and 

reduced set of samples, and achieved testing accuracy 

of around 35.19%. 

Among ADHD subtypes, ADHD-H has far fewer 

samples in the database than ADHD-I and ADHD-C, 

which makes the ADHD subclasses extremely 

unbalanced. The ADHD classification problem can be 

significantly simplified by removing the ADHD-H class. 

The three-class classification problem thus obtained, 

i.e., TDC vs. ADHD-I vs. ADHD-I is well researched. 

In [28] the three-class ADHD classification problem 

was solved for a reduced number of samples. Authors 

achieved testing accuracy of about 60.78%. In [30] the 

Multi-Region Risk-Sensitive Cognitive Ensembler 

solved the same three-class classification problem for 

all available ADHD-200 samples and achieved a testing 

accuracy of about 86%.

Among all methods cited above, only the methods 

presented in [25] and [27] solved the four-class 

ADHD classification problem using all available 

ADHD-200 samples (770 training samples and 171 

testing samples). Thus, fair comparison of the method 

in this paper is only possible with the methods of [25] 

and [27]. The proposed roiFSM outperforms these 

methods by 10.98 % and 8.38% respectively, in terms 

of overall testing accuracy.

VI. Conclusion

The proposed region-of-interest Features Selection 

Method efficiently classifies three subtypes of ADHD 

(ADHD-C, ADHD-I, ADHD-H) and TDC. The roiFSM 

searches for the most significant ROI features in seven 

brain regions: Amygdala, Caudate, Cerebellar Vermis, 

Corpus Callosum, Hippocampus, Striatum, and 

Thalamus. Finally, the roiFSM defines an optimal 

subset of 1328 ROI features from all seven brain 

regions: Amygdala (123 features), Caudate (98), 

Cerebellar Vermis (234), Corpus Callosum (265), 

Hippocampus (196), Striatum (201), Thalamus (211). 

The selected set of ROI features was used to train an 

ELM classifier with overall training accuracy 69.57% 

and overall testing accuracy 67.06%. Experiments 

clearly indicate the advantage of the proposed roiFSM 

in comparison to existing techniques presented in the 

literature. 

The proposed region-of-interest Features Selection 

Method can be improved further by using a more 

advanced framework of the Feature Selection Method 

and by using more efficient crossover and mutation.   
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