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[요    약]

일반적으로 쓰이는 MSE(mean squared error) 성능 기준에 근거한 학습 알고리듬은 비 가우시안 잡음환경에서 충분한 학습 성능

을 나타내지 못하는 것으로 알려져 있다. 한편, MEE (minimum error entropy)에 기반하여 파생된 학습 알고리듬들은 이러한 장애

를 극복할 수 있다. 그러나 MEE의 단점 중 하나로 보다 정확한 오차 엔트로피를 계산할 수 있도록 충분한 수의 오차 샘플이 필요하

며 이로 말미암아 학습 시스템이 복잡해지게 된다. 최근 오차 엔트로피 계산의 효율성을 위해 연속 오차 샘플 와 의 차이를 

활용하는 간단한 학습 방법(SMEE, simplified MEE)에서 의 변동 (variance)가  또는   자체가 가지는 변동보다 크다

는 사실에 착안하여 와  을 활용하는 MZEP (maximum zero error probability)를 제안하고 그 학습 성능을 통신 환경의 등화 

학습에 적용하여 실험하고 분석하였다. 이 제안된 SMZEP (simplified MZEP)는 기존의 SMEE에 비해 2배 이상 빠른 수렴 속도와 

1dB 이상 낮은 정상상태 MSE 성능을 나타냈다. 이에, 제안한 방법은 효율성이 필요한 학습 시스템에서 기존의 SMEE에 비해 보다 

적절한 학습 알고리듬으로 적용될 수 있다.

[Abstract]

The common Mean Squared Error (MSE)-based learning algorithms are known to yield insufficient performance in 
non-Gaussian noise environments. In contrast, learning algorithms developed from the Minimum Error Entropy (MEE) criterion 
can overcome these obstacles. One of the MEE drawbacks is known for requiring sufficient error samples to correctly calculate 
error entropy, which in turn makes the system complicated. A recently proposed learning method for simple and efficient 
calculation of error entropy utilizes the difference between two consecutive error samples  and  in an iteration times k. 
Inspired by the fact that the variance of  could be larger than that of  or , this study proposed a new simple 
learning algorithm based on the Maximum Zero Error Probability (MZEP) criterion and its learning performance was analyzed 
through adaptive equalization experiment in a communication system model. The proposed simplified MZEP (SMZEP) shows 
convergence faster by about two times and lower steady-state MSE by about 1 dB than the simplified MEE (SMEE), indicating 
that the proposed SMZEP can be more appropriate for efficiency-requiring learning systems than the existing SMEE.
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Ⅰ. Introduction

Many tasks in machine learning or adaptive signal 

processing require robustness against noise and rapid 

learning speed and lower steady state error. The 

common mean squared error(MSE) based learning 

algorithms are known not to yield sufficient performance 

in non-Gaussian noise environments[1],[2]. On the 

other hand, learning algorithms developed from minimum 

error entropy(MEE) criterion can break through these 

obstacles[3],[4]. The MEE criterion is a powerful 

approach for robust machine learning as well as for 

non-Gaussian signal processing[4].

MEE criterion has been designed to create error 

entropy using error probability density based on 

Parzen density method[5]. In kernel density estimation 

method like Parzen density, the estimate for error 

density converges to the true error probability as the 

number of error samples increases[6]. That is, the 

MEE requires sufficient error samples for correct 

calculation of error entropy, which in turn makes the 

system complicated.

For this reason there has not been any research of 

using reduced sample points before the approach of 

using only the current error sample  and the 

previous one  for calculating the error entropy has 

recently been proposed[7]. The calculation reduced 

simplified MEE(SMEE) has shown almost equal 

performance unlike the belief of researchers who work 

on MEE[7].

The SMEE criterion contains the term   and 

the variance of  could be larger than that of  
or  itself, which the maximum zero error 

probability(MZEP) criterion handles error samples not 

their differences[8]. The variance of error samples 

leads us to propose a new simple learning algorithm 

based on the MZEP criterion using only  and . In 

this paper, learning performance of the proposed 

simplified MZEP(SMZEP) is analyzed through adaptive 

equalization experiment in a communication system 

model with severely distorted multi-path fading and 

impulsive noise[9].

Ⅱ. MSE Criterion and LMS Algorithm

In case of FIR linear filter, a linear combiner with  

weights  at time   can be used for input vector 

    and output  
[1]. Defining the error as   where  is the 

desired value or training symbol, its MSE is derived as

                     (1)

Using the instant error power  instead of 

estimating the ensemble average of error power we 

obtain the weight update equation 1.

  ∂∂



 (2)

Where  is a step-size or convergence 

parameter that controls its stability. From the fact that 

LMS algorithm employs the instant error power instead 

of using the statistically averaged error power (1), we 

can refer to the LMS algorithm as a simplified version 

of MSE based algorithms using the ensemble average 

of error power.

Ⅲ. MZEP Criterion based on ITL 

The ITL based performance criterion is constructed 

by error probability density which uses Parzen window 

method[5].

In this section we briefly introduce the ITL based 

criterion that maximizes zero-error probability    so as to create a concentration of error 

samples around zero. The estimated error probability ̂ can be calculated using the Parzen window 

method with the sample size   and the Gaussian 

kernel of kernel size [5].

̂   ∑      (3)

where    exp  (4)

This criterion can be developed by minimizing 

quadratic probability distance  ∫ 
between the PDF of error signal  and Dirac-delta 

function of error  , so that  is forced to form 

the shape of  .



Performance Analysis of Learning Algorithms Based on Simplified Maximum Zero-Error Probability

2859 http://www.dcs.or.kr

 ∫ ∫∫ (5)

The term ∫ is not defined mathematically 

but can be treated as a constant since it has no 

relations with the system weights. 

Minimization of  in (5) induces minimization of ∫  and maximization of  , simultaneously. 

It is noticeable that minimization of ∫  indicates 

maximization of error entropy that makes error 

samples spread apart. It is apparent that this 

contradicts the MEE criterion that maximizes ∫ [3],[4]. To avoid this contradiction, MZEP 

criterion that maximizes only the term  in (5) has 

been proposed in [8] as:  

max  (6)

The estimated zero-error probability ̂ can be 

calculated by replacing  with zero in the kernel 

density estimation method (3) with the sample size  . 

̂   ∑     (7)

Ⅳ. Simplified MZEP Criterion and related 

Algorithms

In Parzen window method as in (3), the estimate for 

error density ̂ converges to the true error 

probability  as   increases[6]. Also for the error 

entropy criterion[3], the error entropy approaches 

Renyi entropy as   increases. For these reasons, 

there has not been any research of using reduced 

sample points even to   for  and . The 

approach of using only  and  for calculating the 

error entropy has recently been proposed in [7]. The 

SMEE criterion ∘ can be written as

∘       (8)

From the results of the work[7], learning 

performance in communication channel equalization 

based on the SMEE has shown to be similar to the 

case of sample size   being large enough. Inspired by 

this idea, we propose to use only  and  for the 

criterion of the zero-error probability and analyze its 

performance compared to the SMEE in (8).      

Then, eq. (7) becomes the following ∘ . 
∘    (9) 

And maximization of (9) forces error samples  and  to be moved to near zero.

 

max∘  (10)

This simplified criterion (9) and (10) can be a 

summarized expression of SMZEP.

For the maximization of the Criterion (9) with 

respect to the system   in Section II, the 

gradient ascent method with the step-size  can 

be employed as 

 ∂∂∘  (11)

where the gradient can be evaluated from 

∘  
 

  (12)

So the weight update equation (SMZEP algorithm) 

can be expressed as 

  ⋅⋅⋅⋅ 
 (13)

For comparison, SMEE algorithm in [7] can be 

written as  

 ⋅
 (14)      

It can be noticed that SMZEP algorithm applies 

Gaussian kernel to the error samples  and  
separately while SMEE deals with the difference 

between  and . On the other hand, by comparing 
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(2) and (13), we can notice the error term of (13) has a 

modified form ∘   while (2) has only . 
Likewise, it can be considered that the SMEE has a 

modified error    in (14).  

Then, SMZEP algorithm) becomes 

  ∘∘   (15)

And SMEE algorithm becomes  

     (16)      

It may be worthwhile to observe how different 

performance would be resulted from these different 

features between SMZEP with ∘ and SMEE with . 

And the role of these modified errors is needed to be 

analyzed. 

Ⅴ. Performance Results and Discussion   

In this Section, the learning performance of the 

SMEE and the SMZEP algorithm is discussed and 

resulting properties are analyzed in the experiment of 

communication channel equalization. The experimental 

communication system is shown in Fig. 1.

Fig. 1. A Base-band communication system for the 
experiment

The experimental setup is composed of a data 

generation (random symbol  is generated), 

communication channel  , and a receiver equipped 

with a linear combiner  . The random symbol  at time   is equiprobably chosen among the symbol 

set{±1,±3} and distorted through the multipath 

channel   and corrupted by impulsive noise . 
The transfer function   has two different channel 

model  and [9].  

     (17)     (18)

Both of them have spectral nulls and induce severe 

intersymbol interference (ISI). The impulsive noise 

consists of impulses and white Gaussian noise. The 

impulses are generated by Poisson process with 

variance 50 and occurrence rate 0.03[10],[11]. The 

variance of the background white Gaussian noise is 

0.001.   A sample of the impulsive noise is depicted in 

Fig. 2.
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Fig. 2. A sample of impulsive noise used in the experiment

The linear combiner in the receiver has 11 weights 

which are updated by SMEE or SMZEP with the 

common step size     and the kernel 

size   . Fig. 3 shows the MSE learning curves of 

SMEE and SMZEP for two different channel models. It 

is observed that the learning curve of LMS in (2) 

cannot converge below -16 dB. On the other hand, the 

SMEE and SMZEP algorithms show fast and stable 

convergence to below -23dB. In H1, the SMZEP in 

blue converges in about 1200 samples and the SMEE 

in red does in about 2000 samples. The steady state 

MSE is -26dB for SMZEP but -25dB for SMEE. In both 

convergence speed and lowest MSE, the proposed 

SMZEP shows superior performance. Similar results 
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are observed in channel model H2 showing SMZEP has 

a lower minimum MSE. 

Fig. 4 for the comparison of system error distribution 

shows their performance differences more  clearly. The 

error value on the horizontal axis is defined as the 

difference between the transmitted symbol and its 

corresponding receiver system output. The error 

probability is on the vertical axis. As shown in Fig. 4, 

the system error samples of SMEE and SMZEP 

produces error distributions highly concentrated around 

zero. Especially the proposed SMZEP has significantly 

narrower bell shape of error distribution than the SMEE 

in both channel models revealing that more of the error 

samples of SMZEP are around zero than those of SMEE.

To investigate the cause of the performance 

difference in more detail, we present the fluctuation 

(variance) of the center weight of each algorithm in 

Fig. 5.  After sample number 1000 the center weight of 

both algorithms reaches a steady state but shows 

different behaviors. The variance of the center weight 

of SMEE stays at about 0.015 while that of SMZEP 

indicates 0.0025 which means the center weight of 

SMEE is 6 times more likely to suffer severe 

fluctuations.

As discussed in Section IV, the modified error ∘   in SMZEP and    
in SMEE are compared in Fig. 6 in the aspect of 

fluctuation, that is, variance of modified error. The 

variance of  converges to 0.042 while that of ∘ does 

to 0.017 which is lower by more than 2 times. It can be 

understood that the bigger variance of  from SMEE 

causes the performance degradation in MSE convergence 

and error distribution compared to SMZEP.
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Fig. 3. MSE learning curves (red: SMEE-H1, blue: 
SMZEP-H1, green: SMEE-H2, orange: SMZEP-H2, 
gray: LMS-H1)
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-0.4 to 0.4 (red: SMEE-H1, blue: SMZEP-H1, green: 
SMEE-H2, Orange: SMZEP-H2)
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Fig. 5. Variance of the center weight (red: SMEE, blue: 
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Fig. 6. Variance of modified error (red: SMEE, blue: 
SMZEP)

Ⅵ. Conclusion

In Non-Gaussian noise environments, the common 

criterion MSE does not provide its’ related learning 

algorithms with acceptable learning performance. The 

approach based on ITL breaks through these problems 
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but it has been known to require sufficient data sample 

size that makes the system complicated. A recent 

study proposed a simplified MEE that utilizes only two 

error samples  and  in an iteration. It yields 

sufficiently good performance even with two error 

samples. In this paper, the zero error probability 

criterion using only two error samples e_k 

ande_(k-1)like the SMEE is proposed. The proposed 

SMZEP shows faster convergence by about 2 times 

and lower steady state MSE by about 1 dB than the 

SMEE. Also more of the system error samples of 

SMZEP are concentrated on zero than those of SMEE. 

From the analysis of the cause of the performance 

difference, it is found that the modified error of 

SMZEP produces less fluctuation, which leads to less 

fluctuation of weight after convergence than that of 

the SMEE. So we conclude that the proposed SMZEP 

can be an effective candidate for adaptive learning 

systems that may employ the existing SMEE algorithm.
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