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[Abstract]

The common Mean Squared Error (MSE)-based learning algorithms are known to yield insufficient performance in
non-Gaussian noise environments. In contrast, learning algorithms developed from the Minimum Error Entropy (MEE) criterion
can overcome these obstacles. One of the MEE drawbacks is known for requiring sufficient error samples to correctly calculate
error entropy, which in turn makes the system complicated. A recently proposed learning method for simple and efficient
calculation of error entropy utilizes the difference between two consecutive error samples ¢, and ¢, ; in an iteration times k.
Inspired by the fact that the variance of e¢,—e,_, could be larger than that of e, or e, ,, this study proposed a new simple
learning algorithm based on the Maximum Zero Error Probability (MZEP) criterion and its learning performance was analyzed
through adaptive equalization experiment in a communication system model. The proposed simplified MZEP (SMZEP) shows
convergence faster by about two times and lower steady-state MSE by about 1 dB than the simplified MEE (SMEE), indicating
that the proposed SMZEP can be more appropriate for efficiency-requiring learning systems than the existing SMEE.
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| . Introduction

Many tasks in machine learning or adaptive signal
processing require robustness against noise and rapid
learning speed and lower steady state error. The
common mean squared error(MSE) based learning
algorithms are known not to yield sufficient performance
in non-Gaussian noise environments[1],[2]. On the
other hand, learning algorithms developed from minimum
error entropy(MEE) criterion can break through these
obstacles[3],[4]. The MEE criterion is a powerful
approach for robust machine learning as well as for
non—Gaussian signal processing[4].

MEE criterion has been designed to create error
entropy using error probability density based on
Parzen density method[5]. In kernel density estimation
method like Parzen density, the estimate for error
density converges to the true error probability as the
number of error samples increases[6]. That is, the
MEE requires sufficient error samples for correct
calculation of error entropy, which in turn makes the
system complicated.

For this reason there has not been any research of
using reduced sample points before the approach of
using only the current error sample ¢, and the
previous one ¢,_; for calculating the error entropy has
recently been proposed[7]. The calculation reduced
simplified MEE(SMEE) has shown almost equal
performance unlike the belief of researchers who work
on MEE[7].

The SMEE criterion contains the term e, —e, ; and
the variance of ¢, —e¢,_; could be larger than that of ¢,
or e, , itself, which the maximum zero error
probability(MZEP) criterion handles error samples not
their differences[8]. The variance of error samples
leads us to propose a new simple learning algorithm
based on the MZEP criterion using only ¢, and ¢, ;. In
this paper, learning performance of the proposed
simplified MZEP(SMZEP) is analyzed through adaptive
equalization experiment in a communication system
model with severely distorted multi-path fading and
impulsive noise[9].

[I. MSE Criterion and LMS Algorithm

In case of FIR linear filter, a linear combiner with L

http://dx.doi.org/10.9728/dcs.2023.24.11.2857

weights W, at time % can be used for input vector

_ T _ T
X, = [xpa, 12y g, 4] and output y, = W)X,

[1]. Defining the error as e, =a,—y, where q, is the

desired value or training symbol, its MSE is derived as

MSE=E|é}] 1)

Using the instant error power ei instead of

estimating the ensemble average of error power we
obtain the weight update equation 1.

dél
VI/}Z+1 = VI/}Z_#L% oW (2)

= Wt 250X,

Where s, is a step—size or convergence
parameter that controls its stability. From the fact that
LMS algorithm employs the instant error power instead
of using the statistically averaged error power (1), we
can refer to the LMS algorithm as a simplified version
of MSE based algorithms using the ensemble average

of error power.

lll. MZEP Criterion based on ITL

The ITL based performance criterion is constructed
by error probability density which uses Parzen window
method[5].

In this section we briefly introduce the ITL based
maximizes probability

criterion that Zero—error

fE(eZO) so as to create a concentration of error
samples around zero. The estimated error probability
fxle) can be calculated using the Parzen window

method with the sample size N and the Gaussian
kernel of kernel size ¢[5].

f%(e):%zik:k—zvﬂ G,(e—e;) )

2
€

where G,(e;) = ;\/_exp[ J 4)

oy/2rn 20°

This criterion can be developed by minimizing
quadratic probability distance QD= [ (f(e) —8(e))’de
between the PDF of error signal f(e) and Dirac-delta
function of error &(e), so that fz(e) is forced to form
the shape of &(e).
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QD= [ f2le)de+ [&(e)de—2 [ f(0)de (5)

The term [ &°(e)de is not defined mathematically
but can be treated as a constant since it has no
relations with the system weights.

Minimization of QD in (5) induces minimization of
[ fa(e)de and maximization of f,(0), simultaneously.
It is noticeable that minimization of [ f%(e)de indicates

maximization of error entropy that makes error
samples spread apart. It is apparent that this
contradicts the MEE

[ fa(e)del3],[4]. To avoid this contradiction, MZEP

criterion that maximizes only the term f.(0) in (5) has

criterion that maximizes

been proposed in [8] as:
max/ z(0) (6)
w

The estimated zero-error probability f5(0) can be

calculated by replacing e with zero in the kernel
density estimation method (3) with the sample size M.

f%(o) :%Zik:k—zvﬂ G,(—¢;) )

IV. Simplified MZEP Criterion and related

Algorithms

In Parzen window method as in (3), the estimate for
error density f}(e) converges to the true error
probability fz(e) as N increases[6]. Also for the error

entropy criterion[3], the error entropy approaches
Renyi entropy as N increases. For these reasons,
there has not been any research of using reduced
sample points even to N=2 for ¢, and e, ;. The

approach of using only ¢, and e¢,_; for calculating the
error entropy has recently been proposed in [7]. The

SMEE criterion V*(e,) can be written as

V(o) = 516 ley—eqr) +/2x] (®)

work[7],
performance in communication channel equalization
based on the SMEE has shown to be similar to the
case of sample size N being large enough. Inspired by

From the results of the learning

this idea, we propose to use only ¢, and ¢,_; for the
criterion of the zero—error probability and analyze its
performance compared to the SMEE in (8).

Then, eq. (7) becomes the following f 1 (0).

fED‘ (0):%[Gg<7€k)+Gg(76k*1)] (9)

And maximization of (9) forces error samples ¢, and

e, to be moved to near zero.
maxf . (0) (10)
w

This simplified criterion (9) and (10) can be a
summarized expression of SMZEP.

For the maximization of the Criterion (9) with
respect to the system y, = W,'X, in Section II, the
gradient ascent method with the step—size sz can

be employed as

9/ (0)

Woew = Woa + tsrzrp oW (11)

where the gradient can be evaluated from

—Sw —272%60(_%37[/ (12)
1 Y1
+?e(k71)60( e(e-1)) W

So the weight update equation (SMZEP algorithm)
can be expressed as

17
;”;i”[ek L G(—e) - X+ (13)

€p—1" Gg(_ek—1) : X/zﬂ]

W

o

1= Wt

For comparison, SMEE algorithm in [7] can be
written as

Y7
o Gla=an) - (14)

(ek 7ek71)(Xk 7Xk71)

Wy =W, +

It can be noticed that SMZEP algorithm applies
Gaussian kernel to the error samples ¢, and ¢,_,

separately while SMEE deals with the difference
between ¢, and ¢, ;. On the other hand, by comparing

http://www.dcs.or.kr
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(2) and (13), we can notice the error term of (13) has a
G,(—e,) while (2) has only e,.
it can be considered that the SMEE has a
(e,—e,_1)G, (e, — in (14).
Then, SMZEP algorithm) becomes

modified form e, =e,G,
Likewise,

modified error ef = ep_1)

#SWEP

Wy =W, + [ekX +ep 1 X, 1] (15)

And SMEE algorithm becomes

#SME A (

Wepr =W, + X, —X,_,) (16)

It may be worthwhile to observe how different
performance would be resulted from these different
features between SMZEP with ¢, and SMEE with ef.

And the role of these modified errors is needed to be
analyzed.

V. Performance Results and Discussion

In this Section, the learning performance of the
SMEE and the SMZEP algorithm is discussed and
resulting properties are analyzed in the experiment of
communication channel equalization. The experimental
communication system is shown in Fig. 1.

Commuunication
channel
.
Data a.. | Hiz)= L.
k 3
= e
¢ Training data
Impulsive b 4
et noise 71, 9
utput;)’
< £ x
+y _sni Inpu
Ml ¥ =W X, -
e %
e,
y W,
Learning
algorithms

(SMEE: SMZEP)

Fig. 1. A Base-band communication system for the
experiment
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The experimental setup is composed of a data

generation (random symbol @, is generated),
communication channel H(z), and a receiver equipped
W,'X,,. The random symbol
a, at time % is equiprobably chosen among the symbol

set{£1,£3} and distorted
channel H(z) and corrupted by impulsive noise z,.

with a linear combiner y, =

through the multipath

The transfer function H(z) has two different channel
model Al and F2[9].

H :H(z)=0.26+0.932"140.262"2
2 Hy(z) =0.304+0.903z ' +0.304z 2

(7
(18)

Both of them have spectral nulls and induce severe
intersymbol interference (ISI). The impulsive noise
consists of impulses and white Gaussian noise. The
impulses are generated by Poisson process with
The
variance of the background white Gaussian noise is
0.001.
Fig. 2.

variance 50 and occurrence rate 0.03[10],[11].

A sample of the impulsive noise is depicted in

1 1 1 1

J”Al“ il ]
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Fig. 2. A sample of impulsive noise used in the experiment
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The linear combiner in the receiver has 11 weights
which are updated by SMEE or SMZEP with the
common step size fgypp = topmr = 0-02 and the kernel
size 0 =0.8. Fig. 3 shows the MSE learning curves of
SMEE and SMZEP for two different channel models. It
is observed that the learning curve of LMS in (2)
cannot converge below —-16 dB. On the other hand, the
SMEE and SMZEP algorithms show fast and stable
convergence to below -23dB. In H1, the SMZEP in
blue converges in about 1200 samples and the SMEE
in red does in about 2000 samples. The steady state
MSE is -26dB for SMZEP but -25dB for SMEE. In both
convergence speed and lowest MSE, the proposed
SMZEP shows superior performance. Similar results



Performance Analysis of Learning Algorithms Based on Simplified Maximum Zero-Error Probability

are observed in channel model H2 showing SMZEP has
a lower minimum MSE.

Fig. 4 for the comparison of system error distribution
shows their performance differences more clearly. The
error value on the horizontal axis is defined as the
difference between the transmitted symbol and its
corresponding receiver system output. The error
probability is on the vertical axis. As shown in Fig. 4,
the system error samples of SMEE and SMZEP
produces error distributions highly concentrated around
zero. Especially the proposed SMZEP has significantly
narrower bell shape of error distribution than the SMEE
in both channel models revealing that more of the error
samples of SMZEP are around zero than those of SMEE.

To investigate the cause of the performance
difference in more detail, we present the fluctuation
(variance) of the center weight of each algorithm in
Fig. 5. After sample number 1000 the center weight of
both algorithms reaches a steady state but shows
different behaviors. The variance of the center weight
of SMEE stays at about 0.015 while that of SMZEP
indicates 0.0025 which means the center weight of
SMEE is 6 times more likely to suffer severe
fluctuations.

As discussed in Section IV, the modified error
e, =¢,G(—e,) inSMZEP and ¢ = (e, —¢,_,)G, (e, —¢,_,)
in SMEE are compared in Fig. 6 in the aspect of
fluctuation, that is, variance of modified error. The
variance of e/ converges to 0.042 while that of ¢, does
to 0.017 which is lower by more than 2 times. It can be
understood that the bigger variance of e,j' from SMEE
causes the performance degradation in MSE convergence
and error distribution compared to SMZEP.

—o— SMEE-H1
—O— SMZEP-H1
4 SMEE-H2
—v— SMZEP-H2
—— LMS-H1 b

&
1

o
I

10 log of MSE (dB)

[N)
=]
I

N
]
1

&
S

40‘00 6000 80‘00 10000
number of samples (iterations)
Fig. 3. MSE learning curves (red: SMEE-H1, blue:
SMZEP-H1, green: SMEE-H2, orange: SMZEP-H2,
aray: LMS-H1)
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&

1
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Fig. 4. Probability distribution for error samples ranging from
-0.4 to 0.4 (red: SMEE-H1, blue: SMZEP-H1, green:
SMEE-H2, Orange: SMZEP-H2)
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Fig. 5. Variance of the center weight (red: SMEE, blue:
SMZEP)
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Fig. 6. Variance of modified error (red: SMEE, blue:
SMZEP)

VI. Conclusion

In Non-Gaussian noise environments, the common
criterion MSE does not provide its’ related learning
algorithms with acceptable learning performance. The
approach based on ITL breaks through these problems

http://www.dcs.or.kr
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but it has been known to require sufficient data sample
size that makes the system complicated. A recent
study proposed a simplified MEE that utilizes only two
error samples ¢, and ¢,_; in an iteration. It yields
sufficiently good performance even with two error
samples. In this paper, the zero error probability
criterion using only two error samples e_k
ande_(k-1Dlike the SMEE is proposed. The proposed
SMZEP shows faster convergence by about 2 times
and lower steady state MSE by about 1 dB than the
SMEE. Also more of the system error samples of
SMZEP are concentrated on zero than those of SMEE.
From the analysis of the cause of the performance
difference, it is found that the modified error of
SMZEP produces less fluctuation, which leads to less
fluctuation of weight after convergence than that of
the SMEE. So we conclude that the proposed SMZEP
can be an effective candidate for adaptive learning
systems that may employ the existing SMEE algorithm.
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