
Copyright ⓒ 2022 The Digital Contents Society 1497 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 23, No. 8, pp. 1497-1508, Aug. 2022

데이터베이스 축소 및 OR/NOR 트리를 적용한 BPSO 알고리즘에 기반한 높은 유틸리티

항목집합 마이닝

TAO BODONG1·박 휴 찬2*

1한국해양대학교 대학원 컴퓨터공학과 박사
2*한국해양대학교 해사IT공학부 교수

High Utility Itemset Mining by Using Binary PSO Algorithm with
Database Reduction and OR/NOR Tree construction
BODONG TAO1 · Hyu-Chan Park2*

1Doctor, Department of Computer Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
2*Professor, Division of Marine IT Engineering, Korea Maritime and Ocean University, Busan 49112, Korea

[요 약]

높은 유틸리티 항목집합 마이닝(HUIM)은 데이터 마이닝의 중요한 분야이다. 이는 수익성이 높은 항목을 추출하기 위해 해당

항목의 발생 빈도와 가치를 함께 반영한다는 점에서 단순히 발생 빈도만을 고려하는 빈발 항목집합 마이닝(FIM)과는 차이가 있

다. 기존의 HUIM 알고리즘들은 데이터의 용량이 크거나 항목의 수가 많을 경우 기하급수적으로 늘어나는 탐색 공간을 다룰 수

있어야 한다. 휴리스틱 알고리즘들은 이 문제를 해결하는 효율적인 대안이다. Binary Particle Swarm Optimization(BPSO) 알

고리즘은 다양한 분야에서 사용되는 휴리스틱 알고리즘이다. 본 논문에서는 데이터베이스 축소 및 OR/NOR 트리 구조를 함께

활용한 BPSO 알고리즘을 제안한다. 데이터베이스 축소는 낮은 유틸리티 점수를 가지는 항목들의 조합을 제거하는 데 활용되었

으며, OR/NOR 트리 구조는 높은 유틸리티 항목집합의 비효율적인 조합을 제거하는 데 활용되었다. 본 논문에서 제안한 알고리

즘은 수행 시간을 14% 단축시켰으며 더 많은 수의 높은 유틸리티 항목집합(HUI)을 추출함을 실험을 통해 입증하였다.

[Abstract]

High utility itemset mining (HUIM) is a sub-domain of data mining. This differs from frequent itemset mining (FIM), which
evaluates both the amount and profit elements of the commodity to uncover profitable commodities rather than just the frequency
of occurrences. Traditional HUIM algorithms must manage the exponential growth of the search space when the volume of data
or the number of distinct items is large. Heuristic algorithms are an effective alternative to fixing this problem. The binary particle
swarm optimization (BPSO) algorithm is a heuristic algorithm that has been used in many fields. This paper proposes a BPSO
algorithm with database reduction and OR/NOR tree construction. The database reduction was used to eliminate combinations of
low utility items, and the OR/NOR tree construction was used to eliminate inefficient combinations of high utility itemsets (HUIs).
It is experimentally demonstrated that the proposed algorithm reduced the running time by 14% and mined more HUIs.

색인어 : High utility itemsets, Particle swarm optimization , 데이터베이스 축소, OR/NOR 트리, 데이터마이닝

Keyword : High utility itemsets, Particle swarm optimization, Database reduction, OR/NOR tree, Data mining

http://dx.doi.org/10.9728/dcs.2022.23.8.1497
This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 16 July 2022; Revised 23 August 2022
Accepted 29 August 2022

*Corresponding Author; Hyu-Chan Park

Tel:
E-mail: hcpark@kmou.ac.kr

※ 개인정보 표시제한

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2022.23.8.1497&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5

디지털콘텐츠학회논문지(J. DCS) Vol. 23, No. 8, pp. 1497-1508, Aug. 2022

http://dx.doi.org/10.9728/dcs.2022.23.8.1497 1498

Ⅰ. Introduction

Frequent itemset mining (FIM) is a crucial technique in data
mining. Frequent patterns refer to the itemset that appear
frequently in a database. However, the same item can be
purchased multiple times in a single transaction, and each item's
profit differs. These factors are not taken into account by frequent
itemset mining. To fix these flaws in the frequent itemset, high
utility itemset mining (HUIM) is proposed.

HUIM mines the itemset that satisfies certain conditions by a
certain strategy. The mining method is required to mine itemsets
that are neglected in frequent itemset mining but have high utility
values although they are less frequent. For instance, low sales of
laptops but high profits, high sales of milk but low profits.

The process of finding all itemsets in the database that utility
values no less than a threshold is called utility mining, and the
found itemsets are considered HUIs. The utility of an itemset can
be measured in practical application scenarios by a variety of
factors such as weight, profit, or cost, which can be chosen by the
users according to their actual needs. Therefore, in some practical
application scenarios, utility mining can be more intuitive for
decision assistance.

The search space for the traditional HUIM algorithm is large
and takes a long time when the size of the mined database is
large, or the number of items contained is very large.
Meta-heuristic algorithms can be utilized to solve such problems.

Meta-heuristic algorithms are improvements of heuristic
algorithms, which are the product of the combination of
randomization algorithm and local search algorithm. Kannimuthu
used a genetic algorithm with sorting mutations of minimum utility
thresholds to develop the extraction of high utility patterns to mine
HUIs [1]. During the planning process, this algorithm requires
crossover and mutation to generate the next solution at random.
But for this algorithm to find a satisfactory itemset requires a lot of
computation in the initial stage, which takes a long time.

Particle swarm optimization (PSO) is another metaheuristic
algorithm that is a population-based stochastic optimization
algorithm [2]. It finds the optimal solution by adjusting the
velocity and position of the particles, guided by individual and
global solutions. PSO algorithms unlike genetic algorithms, do not
require crossover and mutation operations and hence save time.

The original PSO algorithm was designed used to handle
continuous space optimization problems, e.g., to find a function's
optimal solution. However, for the case of mining HUIs, there are
only two states for each item, i.e., with or without it. To overcome
this problem, the binary PSO (BPSO) algorithm was created [3].

With proper changes, the discrete space in BPSO is mapped to
the continuous particle motion space. To find the optimal

solution, BPSO algorithm uses the standard PSO algorithm's
velocity-position update strategy. The particle velocity update
formula remains the same, but the individual position can only
take one of two values: 0 or 1.

In BPSO algorithm, the transfer function calculates the
probability of particle location change. Therefore, when choosing
the transfer function, the absolute value of the particle velocity
should be considered. The transfer function should provide a
larger potential of position change for larger absolute values of
velocity. Because a particle's velocity is related to its superiority
or inferiority, a higher velocity implies that the particle is further
from the optimal solution and vice versa [4].

The original BPSO algorithm used a sigmoid function, also
known as an S-shaped function, as a transfer function. The
transfer function of BPSO was divided into S-shaped and
V-shaped functions by Mirjalili [5]. Experiments with the
S-shaped transfer function show that the algorithm lacks local
search ability in the later stages. Mirjalili compared the
effectiveness of the V-shaped and S-shaped transfer functions on
benchmark functions and proved the V-shaped transfer function's
superior search abilities on numerous benchmark functions.

In addition, the change of acceleration coefficients of the
particles during the particle search also affects the particle search
results. There are two types of acceleration coefficients: linear
and nonlinear. And Sun's experiments show that the nonlinear
method is more precise and steadier when searching for the
optimal solution [6].

In the existing studies, most of them are to apply the original
PSO algorithm directly in HUIM and only use some approaches
to enhance the efficiency of mining during data pre-processing or
mining process. These approaches ignore the performance
enhancement of PSO algorithm. Therefore, if the ability of the
PSO algorithm on HUIM is to be further enhanced an improved
PSO algorithm needs to be selected. Furthermore, both PSO
algorithms with V-shaped transfer function and nonlinear
acceleration strategy have been proven to have stronger search
ability. Thus, we used both approaches in the PSO algorithm to
enhance the mining ability and accuracy of the algorithm.

However, using these two approaches increases the running
time of the algorithm. Therefore, we proposed the BPSO
algorithm with database reduction and OR/NOR tree construction
to reduce running time while ensuring accuracy.

 Traditional utility mining models do not have the downward
closure property, so all combinations have to be computed if all
HUIs are to be mined. Liu et al. proposed a transaction-weighted
downward closure property to reduce the combinations while
mining HUIs and reduce the computational effort of the program
[7]. Then, based on this property, Lin et al. first find

High Utility Itemset Mining by Using Binary PSO Algorithm with Database Reduction and OR/NOR Tree construction

1499 http://www.dcs.or.kr

high-transaction-weighted utilization 1-itemsets (1-HTWUIs) in
the data. And based on the 1-HTWUIs construction the
high-utility-pattern (HUP)-tree to mine the HUIs [8].

Since the heuristic algorithm continuously generates random
solutions during the iterative process. Lin et al. proposed the
OR/NOR tree, which enables the algorithm to validate random
solutions (whether they are combinations that exist in the
database) [9]. As only valid random solutions are computed, it
can reduce the number of database scans.

The contributions of this paper are that we use V-shaped
transfer function and nonlinear acceleration strategy to enhance
the search capability of PSO algorithm. And we integrate these
two approaches with TWU model to reduce the data and find
HUIs. In addition, we adopt OR/NOR tree construction to reduce
the number of scans on the database, reduce the computation of
invalid particles and shorten the running time.

Experiments demonstrate that database reduction and OR/NOR
tree construction effectively improve the efficiency of mining and
reduce the running time.

Ⅱ. Related Works

2-1 High Utility Itemset Mining

HUIM is considered an evolution of weighted FIM. In
weighted FIM, only the number of occurrences of an item and its
weight are counted, but the number of items in each transaction is
not taken into account. However, the same commodity may be
purchased multiple times in a transaction, and the total profit
generated by the transaction cannot be calculated solely based on
the profit of a single commodity. As a result, researchers
proposed HUIM to maximize the benefits for merchants’ profit
while avoiding ignoring those profitable but low support items. It
considers the unit profit (the weight of the items) as well as the
number of items in the transaction. This scenario does not lend
itself well to traditional weighted frequent itemset mining.

Chan [10] was the first to propose the problem of mining
HUIs. Subsequently, Yao found HUIs in terms of item amount as
an internal utility and profit per unit as an external utility [11].
And he proposed the mining algorithm as a solution to solve this
problem.

The core of HUIM is utility. It is decided by two factors, the
profit of the item and the number of items in each transaction. And
both factors are considered in the calculation of utility. If the utility
of an itemset is not less than the minimum threshold set by the
user, then the itemset is considered a high utility itemset (HUI).

2-2 Particle Swarm optimization

The particle swarm optimization algorithm was proposed by
Kennedy and Eberhart in 1995, which simulates the behavior of a
flock of birds searching for food randomly in an area. They want
to find the location with the most food, but all the birds do not
know the exact location. Each bird searches in the direction it
judges, recording the location of the most food it found as it
searched and sharing it with the other birds. In this way, the flock
knows which location currently has the most food and adjusts its
next search direction based on this information during the search.

The PSO algorithm is inspired by this biological population
behavior, which is utilized to address the optimization problem.
The above-mentioned bird individuals are modeled by particles,
and each particle is considered a searching individual in an
N-dimensional space. The current position of a particle is a
candidate solution to the corresponding optimization problem,
and the flight process of the particle is the search process of the
individual. The particle's flight velocity can be dynamically
adjusted based on the individual's historical optimal position and
the population's historical optimal position [3].

The process of PSO can be illustrated as follows:
1. Initialization: Set the number of particles and the upper and

lower velocity limits first, then the maximum number of
iterations, the position information for the entire search space.
Then, on the velocity interval and search space, randomly
initialize the velocity and position of each particle.

2. Iteration: Define fitness function, the individual optimal
solution (pbest) is the optimal solution found by each particle
individually, i.e., the best outcome after calculation by the fitness
function. And the global optimal solution (gbest) is the result with
the best outcome among these individual optimal solutions. The
largest pbest and gbest are then updated and retained, and the
pbest and gbest are compared to previous values. Then the particle
updated the position based on their own inertia, pbest and gbest.

3. Termination condition: The particle's global optimal
solution, as well as its position and velocity, are updated
constantly until the termination criterion is met.

The position and velocity of the particle are described as
follows during the update of the PSO algorithm:

(1)

 (2)

In Eps. (1) and (2), the number of iterations is denoted by t,
and the inertia factor is denoted by w1. The velocity of the id-th

디지털콘텐츠학회논문지(J. DCS) Vol. 23, No. 8, pp. 1497-1508, Aug. 2022

http://dx.doi.org/10.9728/dcs.2022.23.8.1497 1500

particle is denoted by vid, the rand () represents a random number
on the range [0,1], and the position of the id-th particle is denoted
by xid. For each particle, c1 and c2 represent the individual and
social learning elements. They are also known as cognitive
acceleration and social acceleration. And individual learning and
social learning, on the other hand, influence the local and global
search ability of the particle, respectively. If the value of
individual learning of the particle is bigger, the local search
ability of the particle is stronger. Conversely, if the value of social
learning of the particle is bigger, the global search ability of the
particle is stronger.

According to Kennedy and Eberhart, the values of c1 and c2
should be set to 2 to balance the search ability of local and global
search. However, Ratanweera proposed a linear acceleration
strategy in which with the increasing number of iterations, c1
gradually becomes smaller and c2 gradually becomes bigger. It
permits the flight velocity of the particle to refer more to its own
information at the early stage of the algorithm and more to social
information in the later stages. This results in the final result
being closer to the optimal solution than the PSO algorithm that
uses constant acceleration values [12].

Subsequently, Feng showed experimentally that better results
are obtained when using an asymmetric range of variation (c1
decreases from 2.75 to 1.25, and c2 increases from 0.5 to 2.25)
[13]. However, the drawback of this method is that it causes the
particles always to converge to the local optimal solution in
advance. Chen also suggested a nonlinear acceleration adjustment
strategy constructed by using arccos function construction to
address this issue. And experiments showed that the method
improved the convergence for the multi-peaked function and
enhanced the ability to search for the global optimal solution [14].

In addition, particle swarm algorithms are also used for data
mining of other patterns. To generate association rules for the
relationship between sentiment dimensions and design attributes,
Jiang proposed a multi-objective particle swarm algorithm [15].
To mine association rules, Indira proposed an adaptive strategy
for controlling inertia and learning factors in particle swarm
algorithms [16]. Jitendra proposed a method for mining positive
and negative association rules. They applied the coding step to
positive and negative rules, respectively, in terms of statistical
correlation between transaction databases [17].

However, in real-life scenarios, the variables of many problems
do not in a continuous interval, but in a discrete variable space.
Therefore, Kennedy and Eberhart designed a discrete binary PSO
(BPSO) to address the limitations of continuous PSO [3].

The BPSO algorithm converts each particle into a set of binary
variables and maps the discrete problem space to the continuous
particle motion space. The key step in BPSO is the conversion of

real values to binary values of 0 or 1 by means of a transfer
function. And the possibility of altering the elements of the
position vector from 0 to 1 is defined by transfer functions.
Original transfer functions are used to perform probabilistic
updates using sigmoid transition functions. The V-shaped transfer
function has the advantage over the sigmoid transfer function in
that it encourages particles to stay in their current position when
the velocity value is low and switch to their complement when
their velocity value is high. It makes enhanced local search ability
of the algorithm possible, which improves the performance of the
BPSO algorithm. Zhang mined the frequent itemsets by the BPSO
algorithm with V-shaped transfer function [18].

Ⅲ. Problem Statement

HUIM is the process of finding the itemsets with utility values
not less than the threshold value from transaction database. A
series of formulas must be used to calculate the utility value. The
next sections outline the problem description and related
definitions for HUIM.

Let I= {i1, i2, …, in} be a finite itemset, and the item ij (1 ≤ j ≤

n), in this set, each item has uniquely determined profit values
p(ij). If the itemset contains k items, it is called a k-itemset. The
transaction database includes a transaction table and a profit table.
The transaction table includes multiple transactions T = {T1, T2,
…, Tm}, where each transaction Td (Td ⊆ T) has a unique
identifier d, called TID, and each transaction includes items and
their corresponding purchase quantities. Then, depending on the
user's preferences, a minimal utility threshold is set as
min_threshold according to the user’s preference. It will serve as
the foundation for judging HUIs.

An example is given in Table 1 and Table 2 as a running
demonstration for this paper. Table 1 shows the transaction data,
with a total of 10 transactions and 6 different items, denoted by a
to f, respectively. And Table 2 shows the profit table.

The following are seven definitions for HUI calculations.
Definition 1. The utility value of an item ij, in a transaction Td is
denoted as u (ij, Td), which is equal to the quantity of ij in the
transaction Td, denoted as q(ij, Td), multiplied by the
corresponding profit p(ij) which is defined as

 × (3)

For example, T2 contains four items b, d, e, f, and calculate the
utility of item b, u(b, T2)=q(b, T2)×p(b)=5×9=45.

Definition 2. The utility value of itemset X in a transaction Td is

High Utility Itemset Mining by Using Binary PSO Algorithm with Database Reduction and OR/NOR Tree construction

1501 http://www.dcs.or.kr

denoted as u(X, Td), which is defined as

⊆

 ⊆

 (4)

For example, in transaction T2, the utility values of itemset (bd)
is calculated as u(bd, T2)=u(b, T2)+u(c, T2)=45+60=105.

Definition 3. The utility value of an itemset X in a transaction
database DB is denoted as u(X), which is defined as

⊆

 ⊆

 (5)

For example, in the whole transaction database, the utility
value of itemsets (bc) is calculated u(bc)=u(bc, T1)+u(bc,
T6)=117+72+54+48=291.

표 1. 트랜잭션 데이터베이스

Table 1. Transaction database
TID Transaction (item, quantity)

T1 b:13, c:9, d:12

T2 b:5, d:6, e:8, f:15

T3 d:15, e:13, f:13

T4 b:14, d:7

T5 a:6, b:10, d:15, e:10

T6 b:6, c:6

T7 b:2, d:14

T8 a:2, b:6, d:9, e:10

T9 b:5, d:13, e:12

T10 a:10, b:15, d:11, e:4

표 2. 이익 표

Table 2. Profit table

Item a b c d e f

Profit 2 9 8 10 5 7

Definition 4. The total utility value of a transaction Td is denoted
as tu(Td)), which defined as

⊆

 (6)

For example, tu(T1)=u(b, T1)+u(c, T1)+u(d, T1)=
117+72+120=309. By the same token, it follows that tu(T2)=250,
tu(T3)=306, tu(T4)=196, tu(T5)=302, tu(T6)=102, tu(T7)=158,
tu(T8)=198, tu(T9)=235 and tu(T10)=285.

Definition 5. The total utility value of transaction database DB is
denoted as TU, which defined as

ϵ

 (7)

The total utility value of DB is calculated as TU =309+ 250
+306+196+302+102+158+198+235+285= 2341.

Definition 6. HUI is an itemset whose utility is not less than
threshold (TU × min_threshold).

Definition 7. In a transaction database DB, there are multiple
transactions that contain an itemset, and the sum of the utility
values of these transactions is called the transaction-weighted
utility of an itemset, denoted as TWU(X).

⊆

ϵ

 (8)

HUIM is to find the itemsets whose utility values are not less
than the threshold from the transaction database and the profit
table, where the threshold is set by the user.

Ⅳ. Mining Methodology and Process

In this section, the mining process in conjunction with the PSO
algorithm will be described in detail here.

4-1 Particle Encoding

The BPSO mining algorithm is the foundation of the proposed
algorithm. The particles are the basic unit of the BPSO algorithm
and each particle in the PSO algorithm corresponds to an itemset,
i.e., a potential HUIs. The presence or absence of the
corresponding item is represented by 1 or 0 in each position of the
itemset. As shown in Fig. 1, only the corresponding positions of
items (a) and (e) are 1, so the itemset corresponding to particle
(10010) is (ae).

그림 1. 파티클 인코딩

Fig. 1. Encoding of particle

4-2 Particle Encoding

디지털콘텐츠학회논문지(J. DCS) Vol. 23, No. 8, pp. 1497-1508, Aug. 2022

http://dx.doi.org/10.9728/dcs.2022.23.8.1497 1502

The particle evaluation in the BPSO algorithm is dependent on
the fitness function results. The utility value of the itemset is
represented by the fitness value. In the process of evolution, new
particles (potential solutions) are continuously generated, and the
utility value of the new particles is calculated by the fitness
function, and the merit of the new particles is judged according to
the result of the fitness function. The best position of an
individual is denoted as pbest and the best position in the
population is denoted as gbest. They provide the foundation for
particle motion. The fitness function in this algorithm is defined as

 (9)

Pi is the i-th particle generated. X is the itemset in pi that is set
to 1. Then the fitness value of itemset X was calculated, i.e., the
utility value. If the utility value is not less than the threshold, it is
considered a HUI and added into the set of HUIs.

Take the utility value calculation of itemset (ae) as an example.
Itemset (ae) is present in transactions T5, T8 and T10. So the utility
value is calculated as u(ae)= u(ae, T5)+u(ae, T8)+u(ae,
T10)=62+54+40=156.

4-3 Database Reduction

1)1-HTWUIs

The length of HUI is determined by the number of
high-transaction-weighted utilization 1-itemsets(1-HTWUIs)
found during the preprocessing.

The 1-HTWUIs was proposed based on TWU model.
1-HTWUIs are a set of individual items, and the utility value of
each item is not less than the threshold.

The proposed algorithm calculates the utility value of each
item, then compares it with the threshold and finds the
1-HTWUIs. Then the items that are not 1-HTWUIs in each
transaction. This process can reduce a massive set of invalid
items. Since HUIM needs to constantly scan the database during
the mining process, reducing the dimension of items can reduce
the time spent on scanning the database.

Each particle has a fitness value determined by a fitness
function. When initialized, every particle is given an initial
velocity and position. The particles then change their positions
according to the result of calculated fitness values.

Take the database in Table 1 as an example, the minimum
utility threshold is set to 0.2 and the total utility of the database is
2341, so the threshold is calculated as follows (2341*0.2=468.2).
Compared to the threshold, items with larger utility values are
treated as 1-HTWUIs and smaller items are pruned. The
discovered 1-HTWUIs are shown in Table 3. From Table 3, we

can see that item c does not belong to the 1-HTWUIs, so the
information related to item c should be pruned in the database and
profit table.

2)Database reduction

표 3. 발견한 1-HTWUIs

Table 3. Discovered 1-HTWUIs
Item TWU 1-HTWUIs

a 785 Yes

b 2035 Yes

c 411 No

d 2239 Yes

e 1576 Yes

f 556 Yes

표 4. 축소한 트랜잭션 데이터베이스

Table 4. Reduced transaction database
TID Transaction (item, quantity)

T1 b:13, d:12

T2 b:5, d:6, e:8, f:15

T3 d:15, e:13, f:13

T4 b:14, d:7

T5 a:6, b:10, d:15, e:10

T6 b:6

T7 b:2, d:14

T8 a:2, b:6, d:9, e:10

T9 b:5, d:13, e:12

T10 a:10, b:15, d:11, e:4

표 5. 변환한 이진 항목 행렬

Table 5. Converted binary item matrix
TID a b d e f

T1 0 1 1 0 0

T2 0 1 1 1 1

T3 0 0 1 1 1

T4 0 1 1 0 0

T5 1 1 1 1 0

T6 0 1 0 0 0

T7 0 1 1 0 0

T8 1 1 1 1 0

T9 0 1 1 1 0

T10 1 1 1 1 0

High Utility Itemset Mining by Using Binary PSO Algorithm with Database Reduction and OR/NOR Tree construction

1503 http://www.dcs.or.kr

표 6. 변환한 유틸리티 행렬

Table 6. Converted utility matrix

TID a b d e f

T1 0 117 120 0 0

T2 0 45 60 40 105

T3 0 0 150 65 91

T4 0 126 70 0 0

T5 12 90 150 50 0

T6 0 54 0 0 0

T7 0 18 140 0 0

T8 4 54 90 50 0

T9 0 45 130 60 0

T10 20 135 110 20 0

Based on the obtained 1-HTWUIs, the reduced transaction
database is shown in Table 4. And the item and the corresponding
utility value (quantity multiplied by profit) of the new transaction
database are converted into two matrices as shown in Table 5 and
Table 6. Then the particle adaptation value is calculated by
scanning these two matrices. The original PSO algorithm gives a
random value for particle initialization, while this algorithm uses
the converted binary matrix as the basis for particle initialization,
which has the advantage that each item of the generated particles
is from the 1-HTWUIs of the database, which reduces the
interference of low utility item.

4-4 Constructing OR/NOR tree

The initialization of particles in the PSO algorithm affects the
algorithm's results. The higher the quality of the initial particles,
the better the fitness function's outputs, and hence the greater the
chance of mining HUIs. Because the preceding generation has an
effect on the particles formed during the iterative phase.

The BPSO algorithm, on the other hand, generates random
particle combinations. As a result, it is critical to determine
whether the combinations are redundant; if the combination does
not exist in the database, it is redundant. The algorithm's running
time can be reduced by not calculating the utility value of
redundant combinations.

As a result, during initialization, it is necessary to build
non-redundant combinations using an OR/NOR tree and then
check whether the generated combinations exist in the database
during iteration.

The OR/NOR tree is created by converting the set of maximal
patterns into a tree. The maximal pattern is defined in Definition 8.
Definition 8. For a pattern (a), if there is no other pattern in the
database that is a superset of (a), then (a) is termed the maximal
pattern.

The way of identifying the maximal pattern in the proposed
algorithm is to sort the reduced transaction database according to
the length of the data. Then start from the longest data as the
maximal pattern. Afterward, traverse the database, delete the data
of all the subsets of that pattern in the database, and then continue
to find the next maximal pattern. Continue to identify the largest
pattern of length minus one until all of the data has been
traversed. When a new maximal pattern is identified, it is added
to the set of maximal patterns.

Then each maximal pattern is converted into a binary itemset
in the order of particle encoding. One after the other, the
converted binary itemsets are converted into the nodes of
OR/NOR tree. The conversion is done by traversing each position
of the itemset. It is converted to an "OR" node when the position
is 1, and to a "NOR" node when the position is 0. Convert the
next itemset after the previous one has been converted. When the
position is 1, choose the "OR" node; otherwise, choose the
"NOR" node. A new node is formed if a different value exists at a
place; otherwise, continue along the node to compare the value at
the next position.

Taking the reduced database in Table 4 as an example, the
maximal patterns of this database are (abde) and (bdef). First
convert (abde) to a binary itemset (11110), corresponding to the
generated nodes: {(a,OR), (b,OR), (d,OR), (e,OR), (f,NOR)}
Then convert (bdef), which corresponds to the set of binary
itemset (01111), , and its converted nodes are {(a,NOR), (b,OR),
(d,OR), (e,OR), (f,OR)}. The OR/NOR tree structure constructed
through the reduced database in Table 4 is shown in Fig. 2.

During initialization and iteration, the OR/NOR tree generates
or verifies particles. When particles are generated via an
OR/NOR tree, the particles will choose an OR/NOR tree path at
random. When a position is an "OR" node, it can randomly
generate 0 or 1. When a position is marked as a "NOR" node, it
can only generate 0.

After itemsest generation, the OR/NOR tree can also be used
to determine whether the itemsets are redundant. If the current
position is 1, the "OR" node must be chosen, and if it is 0, the
"NOR" node must be chosen. For example, the OR/NOR tree in
Fig. 5 can verify that the itemset (abf) is redundant. Because the
itemset's encoded value is (11001), the initial position is 1, hence
the (a,OR) node must be chosen. However, because the path's last
node is "NOR," (abf) is a redundant combination.

In the iteration process, the OR/NOR tree structure can help
prevent redundant combinations. It can check whether the
combinations generated exist in the database [1]. When the
particle updates its position, it can determine whether the particle
is redundant or not based on whether the new particle conforms to
the rules of the OR/NOR tree, i.e., whether the new particle is a

디지털콘텐츠학회논문지(J. DCS) Vol. 23, No. 8, pp. 1497-1508, Aug. 2022

http://dx.doi.org/10.9728/dcs.2022.23.8.1497 1504

subset of a certain maximal pattern, because the combinations are
constructed based on the set of maximal patterns and the
arrangement of the order of items.

When a new particle does not belong to a subset of a
maximum pattern, it signifies the new particle does not belong to
a subset of a certain transaction in the database. The itemset
mined by HUIM must come from the database. If a particle does
not follow the rules of the OR/NOR tree, it signifies that the
particle's combination is redundant, and the utility value of the
particle does not need to be calculated.

4-5 V-shaped Transfer Function

The update formula for the velocity of the BPSO algorithm is still
the same as the original PSO algorithm, shown in Eps. (1). And the
probability of particle position change is based on the transfer
function. The transfer function should be the probability of changing
each dimension of the position vector from 0 to 1 and vice versa.

The original transfer function for BPSO position vector update is
the sigmoid function. The sigmoid function is a monotonically
increasing function, which does not conform to the rule that the
probability of its position changing increases with the absolute
value of the velocity. The V-shaped function does not force the
particle to change its value from 0 to 1. Instead, it maintains the
particle at its initial position when the velocity is extremely slow
and updates the position to its complement when the particle is
moving extremely fast. Because the velocity of the particle in the
PSO algorithm represents the quality of the particle. The V-shaped
transfer function is shown in Fig. 3, X is the velocity of the particle.

그림 2. OR/NOR 트리 구조

Fig. 2. OR/NOR tree structure

그림 3. V자형 전달 함수

Fig. 3. V-shaped transfer function

The velocity update formula shows that the velocity of particle
would increase as it moves further from the optimal situation.
Therefore, when a particle is moving faster, it should be more
likely to change its position vector, i.e., updated to the
complement of that position vector. So the V-shaped transfer
function is chosen as the transfer function of the proposed
algorithm.

The V-shaped function is shown in Eps. (10) and Eps. (11),
where xid(t)-1 represents the complement of xid(t) and rand() is a
random value between 0 and 1.

arctan

 (10)

 if 〈

 if ≥

(11)

4-6 Nonlinear Acceleration Strategy

In PSO algorithm, c1 and c2 are the particle's acceleration in Eps.
(1). Their values govern how the particle searches, the larger c1, the
better the particle's local search ability, and the larger c2, the better
the particle's global search ability. Therefore, taking advantage of
these two acceleration variations can lead to better results.

For the process of mining HUIs, the ideal state should be to
expand the search space of particles at the early stage of the
search to obtain the diversity of particles. With more potential
solutions at the early stage, it can give more references to
particles in the search and enhance the ability to search for global
optimal solutions and find more HUIs at the later stage.

To account for the influence of acceleration on the BPSO
algorithm, Chen proposed a nonlinear acceleration adjustment
strategy based on the arc cos function. [14], as shown in Eps (12)
and (13). And the trends of c1 and c2 are shown in Fig. 4.
CurrentIterances indicates the current iteration number, and
MaxIterances indicates the maximum iteration number, which are
parameters pre-set by the user before executing the algorithm.

High Utility Itemset Mining by Using Binary PSO Algorithm with Database Reduction and OR/NOR Tree construction

1505 http://www.dcs.or.kr

And c1min and c2min are the minimum values of c1 and c2
respectively, and c1max and c2max are the maximum values of c1 and
c2 respectively. This strategy brings the particle's search state
closer to the ideal state. Therefore, we apply the nonlinear
acceleration strategy in the particle velocity update formula to
enhance particle diversity and find more HUIs.

4-7 Mining Process

The proposed mining model of the binary particle swarm
algorithm (BPSO) is broken down into four large phases, which
contain nine stages. The nine stages of the whole mining process
are shown in Fig. 5.

The first phase is data reduction. This phase is to find the
1-HTWUIs and remove the items from the data that are not
1-HTWUIs. The next phase is pre-processing. It entails creating
an item binary matrix as well as a quantity matrix. The
pre-processing step is concerned with supplying the required data
and facilitating the mining process. So in this process, the
database is converted into a binary matrix and a quantity matrix.

The third phase is to generate the OR/NOR tree. This phase is
to find the maximum pattern of the reduced data and generate an
OR/NOR tree based on it. And the last phase is the mining
process based on the BPSO algorithm. In this process, the
algorithm first gets the initialized particles by OR/NOR tree and
assigns random initial velocities. Subsequently, the utility value
of each particle is calculated to obtain the pbest and gbest of the
particle swarm. Then, in the succeeding iterations, the velocity
and pbest of each particle and the gbest of the particle swarm are
updated by the V-shaped transfer function and the nonlinear
acceleration coefficient strategy. And in the iterative process, the
particles with utility values no less than the threshold are added to
the set of HUIs. Then repeat the process till the number of iterations
reaches the upper limit, and then return the found set of HUIs.

그림 4. 가속도 계수 c1 및 c2

Fig. 4. Acceleration coefficients c1 and c2

 minmaxmin

⋅

arcmax

×

 

(12)

 min maxmin

  ⋅

arcmax

×

(13)

그림 5. 마이닝 알고리즘 프로세스

Fig. 5. Process of mining algorithm

Ⅴ. Experiment and Discussion

This section compared four algorithms: VBPSO algorithm
without data reduction and OR/NOR tree, VBPSO-DR algorithm
with data reduction only, VBPSO-T with OR/NOR tree only, and
VBPSO+ algorithm with data reduction and OR/NOR tree. All
experiments are run on a Microsoft Windows 11 computer with
an Intel Core i5 3.0GHz CPU and 16GB of RAM. Experiments
were conducted on three databases normally used for HUIM:
Chess dataset, Mushroom dataset, and Foodmart dataset.

The information of the three datasets is shown in Table 7. The
parameters of the particle swarm algorithm were set as follows:
the number of particles was set to 20, the velocity range of the
particles was set between [-10, 10], and all algorithms were
iterated 10,000 times.

표 7. 데이터 세트

Table 7. Dataset

Dataset Number of items
Total number of

transactions

Chess 76 3,196

Mushroom 120 8,124

Food mart 1,559 21,557

디지털콘텐츠학회논문지(J. DCS) Vol. 23, No. 8, pp. 1497-1508, Aug. 2022

http://dx.doi.org/10.9728/dcs.2022.23.8.1497 1506

5-1 Number of High Utility Itemsets

The percentages of HUIs found by the four algorithms are
shown in Table 8. The number of HUIs mined by the four
algorithms for each of the three datasets is shown Figs. 6 - 8.

From these figures, it is evident that the proposed VBPSO+
algorithm can mine more HUIs compared to other algorithms. It
is also evident that as the number of items in the database grows,
the percentage of HUI mined by the BPSO algorithm drops,
which could indicate the restriction of the PSO algorithm.

5-2 Running Time

The running times of four algorithms are shown in Table 9.
The running times of each algorithm are represented in figures
and they are shown in Figs. 9 - 11. The threshold settings for the
three datasets in the running time experiments were identical to
those used in the mining HUIs experiments.

It is evident that both data reduction and OR/NOR tree reduce
the mining time, while the VBPSO+ algorithm combining the two
methods has the shortest running time. It confirms the
effectiveness of data reduction and OR/NOR tree.

그림 6. Chess 데이터베이스에서 채굴된 HUI 수

Fig. 6. Number of HUIs mined from the Chess dataset

그림 7. Chess 데이터베이스에서 채굴된 HUI 수

Fig. 7. Number of HUIs mined from the Chess dataset

그림 8. Chess 데이터베이스에서 채굴된 HUI 수

Fig. 8. Number of HUIs mined from the Chess dataset

그림 9. 알고리즘 실행 시간 - Chess 데이터베이스

Fig. 9. Running time of algorithm - Chess dataset

그림 10. 알고리즘 실행 시간 – Mushroom 데이터베이스

Fig. 10. Number of HUIs mined from the Mushroom
dataset

그림 11. 알고리즘 실행 시간 – Foodmart 데이터베이스

Fig. 11. Number of HUIs mined from the Foodmart dataset

High Utility Itemset Mining by Using Binary PSO Algorithm with Database Reduction and OR/NOR Tree construction

1507 http://www.dcs.or.kr

표 8. 발견한 HUI의 백분율

Table 8. Percentage of discovered HUIs
Threshold

（%）
VBPSO
（%）

VBPSO-DR
（%）

VBPSO-T
（%）

VBPSO+
（%）

Chess
dataset

25.30 86.76 88.23 89.71 91.18

25.50 90.47 92.86 95.24 95.24

25.70 96.51 100.00 100.00 100.00

Mushroom
dataset

14.00 60.87 71.01 76.81 82.61

14.25 66.67 74.36 79.48 87.18

14.50 70.00 70.00 85.00 90.00

Foodmart
dataset

0.12 25.39 33.33 36.51 44.44

0.13 28.95 31.27 42.11 47.37

0.14 33.33 33.33 40.00 46.67

표 9. 알고리즘 실행 시간 (초)

Table 9. Running time of algorithms (in seconds)
Threshold

（%）
VBPSO
（s）

VBPSO-DR
（s）

VBPSO-T
（s）

VBPSO+
（s）

Chess
dataset

25.30 1,356 1,256 1,302 1,176

25.50 1,379 1,267 1,297 1,152

25.70 1,373 1,229 1,309 1,190

Mushroom
dataset

14.00 2,371 2,250 2,296 2,126

14.25 2,325 2,269 2,289 2,147

14.50 2,368 2,234 2,303 2,177

Foodmart
dataset

0.12 24,927 22,376 23,790 20,860

0.13 25,017 22,376 23,247 21,394

0.14 25,328 22,680 23,459 21,683

Ⅵ. Conclusion

High utility itemset mining is a critical issue in data mining
that can be used to substitute frequent itemset mining in revealing
high profit commodities. This paper proposed a new BPSO
algorithm, VBPSO+, which is an extension of the original BPSO
algorithm with database reduction and OR/NOR tree construction,
to mine such itemsets. Several experiments showed that the
proposed VBPSO+ can mine more high utility itemsets in less
time compared to other algorithms. It reduces the mining time by
about 14%.

Furthermore, database reduction is more effective at reducing
running time than OR/NOR tree, while the latter is better at effectively
mining HUIs. The two methods are combined, and the resulting
algorithm VBPSO+ enhances the advantages of both, outperforming
VBPSO in terms of mining efficiency and running time.

In recent years, besides the PSO algorithm, some other
meta-heuristics algorithms have been proposed. Afterward, we
will try to adopt these new meta-heuristics algorithms for HUIM
to see if they can improve mining efficiency, e.g., by mining more
HUIs or reducing running time.

References

[1] Kannimuthu S, Premalatha K, “Discovery of high utility
itemsets using genetic algorithm with ranked mutation,”
Appl Artif Intell, vol. 28, no. 4, pp. 337–359, 2014.
DOI:10.1080/08839514.2014.891839.

[2] Kennedy J, Eberhart R, “Particle swarm optimization,” IEEE
Int Conf Neural Netw, vol. 4, pp.1942–1948, 1995. DOI:
10.1109/ICNN.1995.488968.

[3] Kennedy J, Eberhart R, “A discrete binary version of particle
swarm algorithm,” IEEE Int Conf Syst Man Cybern, vol. 5,
pp. 4104–4108, 1997. DOI: 10.1109/ICSMC.1997.637339.

[4] Rashedi E, Nezamabadi-Pour H, Saryazdi S, “BGSA: binary
gravitational search algorithm,” Natural Computing, vol. 9,
no. 3, pp. 727–745, 2010. DOI: 10.1007/s11047-009-9175-3.

[5] Mirjalili S, Lewis A, “S-shaped versus V-shaped transfer
functions for binary particle swarm optimization,” Swarm
and Evolutionary Computation, vol. 9, pp. 1–14, 2013. DOI:
10.1016/j.swevo.2012. 09. 002.

[6] SUN Xiang, “The influence of dynamic nonlinear
acceleration coefficients on PSO,” Computer Engineering
& Science, vol. 3, no. 10, pp.131-134, 2011. DOI:
10.3969/j.issn.1007-130X.2011.10.023.

[7] Liu, Ying, Wei-keng Liao, and Alok Choudhary. "A
two-phase algorithm for fast discovery of high utility
itemsets." Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, Berlin, Heidelberg,
pp. 689-695, 2005. DOI: 10.1007/11430919_79.

[8] Lin, Chun-Wei, Tzung-Pei Hong, and Wen-Hsiang Lu. "An
effective tree structure for mining high utility itemsets."
Expert Systems with Applications, vol. 38, no. 6, pp.
7419-7424, 2011. DOI: 10.1016/ j.eswa.2010.12.082.

[9] Jerry Chun-Wei Lin, Lu Yang. P. Fournier-Viger, T.-P.
Hong, and M. V oznak, “A binary PSO approach to mine
high-utility itemsets,” Soft Comput, vol. 21, no. 17, pp.
5103–5121, 2017. DOI: 10.1007/s00500-016-2106-1.

[10] Chan R, Yang Q, Shen YD, “Mining high utility itemsets,”
IEEE Int Conf Data Mining, pp. 19–26, 2003.
https://doi.org/ 10.1109/ICDM.2003.1250893.

[11] Yao H, Hamilton H J, Butz C J, “A Foundational Approach
to Mining Itemset Utilities from Databases,” SDM, vol. 4,

디지털콘텐츠학회논문지(J. DCS) Vol. 23, No. 8, pp. 1497-1508, Aug. 2022

http://dx.doi.org/10.9728/dcs.2022.23.8.1497 1508

pp. 215-221, 2004. https://doi.org/10.1137/1.978161
1972740.51.

[12] Ratanweera A, Halgamuge S, Waston H, “Self-organizing
hierarchical particle swarm optimizer with time-varying
acceleration coefficients,” IEEE Transactions on
evolutionary computation, vol. 3, no. 8, pp.240-255, 2004.
https://doi.org/ 10.1109/TEVC.2004.826071.

[13] Feng Xiang, Chen Guo long, Guo Wen Zhong, “Setting and
experimental analysis of acceleration factor in particle
swarm optimization algorithm,” Journal of Jimei University
(Natural Science), vol. 11, no. 2, pp.146-151, 2006.

[14] SL Chen，GR Cai，WZ Guo，GL Chen, “Study on the
Nonlinear Strategy of Acceleration Coefficient in Particle
Swarm Optimization (PSO) Algorithm,” Journal of
Yangtze University (Natural Science Edition) Sci & Eng,
vol.04,2007. https://doi.org/1016772/j.cnki.1673-1409,
2007,04,047.

[15] Huimin Jiang, C. K. Kwong, W. Y. Park & K. M. Yu, “A
multi-objective PSO approach of mining association rules
for affective design based on online customer reviews,”
Journal of Engineering Design, vol. 29, no. 7, pp. 381-403,
2018. https://doi.org/10.1080/09544828. 2018.1475629.

[16] K. Indira, S. Kanmani, “Association rule mining through
adaptive parameter control in particle swarm
optimization,” Comput Stat.Springer-V erlag Berlin, vol.
30, no. 1, pp. 251-277, 2015. https://doi.org/10.1007/
s00180-014-0533-y.

[17] Jitendra Agrawal, Shikha Agrawal, Ankita Singhai,Sanjeev
Sharma, “SET-PSO-based approach for mining positive
and negative association rules,” Knowl Inf Syst, vol. 45,
no.2, pp.453-471, 2015. https://doi.org/10.1007/s10115–

014-0795-2.
[18] Zhang Zhong-jie，Huang Jian,Wei Ying, “Frequent item

sets mining from high-dimensional dataset based on a
novel binary particle swarm optimization.” Cent. South
Univ, vol. 23, no. 7, pp. 1700-1708, 2016. https://doi.org/
10.1007/s11771-016-3224.

BODONG TAO

2015년 : East China Jiaotong

University, China (공학사)

2022년 : 한국해양대학교 대학원

(공학석사)

2022년～현 재 : 한국해양대학교 컴퓨터공학과 박사

※관심분야：데이터베이스, 데이터 마이닝

박휴찬(Hyu Chan Park)

1985년 : 서울대학교 (공학사)

1987년 : 한국과학기술원 (공학석사)

1995년 : 한국과학기술원 (공학박사)

1997년～현 재 : 한국해양대학교 해사IT공학부 교수

※관심분야：데이터베이스, 데이터마이닝, 빅데이터, 선박 및

해양정보

	High Utility Itemset Mining by Using Binary PSO Algorithm with Database Reduction and OR/NOR Tree construction
	요약
	Abstract
	Ⅰ. Introduction
	Ⅱ. Related Works
	Ⅲ. Problem Statement
	Ⅳ. Mining Methodology and Process
	Ⅴ. Experiment and Discussion
	Ⅵ. Conclusion
	References

