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[Abstract]

Initializing the weights plays an essential role in a convolutional neural network model. This paper investigates how Glorot and
He's initialization methods behave in Mobilenet and Resnet models on the weeds classification problem. Experiments show that
pointwise and depthwise convolution in Mobilenet reduces the variance of feature maps from earlier layers. Using the He’s
method, shortcut connection in Resnet saturate values in logistic classify layer. The accuracy of Mobilenet and Resnet, using
Glorot's method, are 0.9568 and 0.9711, respectively. While using He's method, we obtain 0.9471 using Mobilenet and 0.9645

using Resnet. Also, both models converge faster and better generalization using Glorot's method than using He's method.
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| . INTRODUCTION

Many researchers have used convolutional neural network
(CNN) models and achieved state-of-the-art performances in
many computer vision problems, such as object detection,
classification, and retrieval. These models are either trained from
scratch or used transfer learning to initialize weights in models.
Transfer learning applies weights trained from a source domain as
initial parameters to a target domain. In practice, many deep
learning frameworks such as Tensorflow [1], Keras [2], or
PyTorch [3] support CNN models trained on the ImageNet
dataset for transfer learning purposes. As shown in [4], we can
apply transfer learning to guide the model to converge quickly, as
long as the information features in the target domain are similar to
those in the source domain. Otherwise, training the model from
scratch is a reasonable solution. But this type of training requires
careful initialization of learnable weights so that the model can
learn features efficiently.

From a classical shallow LeNet-5 model to the deep VGG,
Mobilenet, and Resnet CNN models, in general, a CNN model
architecture consists of many “stacks” convolutional layers,
where the output feature maps of a layer are the input of other
layers. A matrix multiplication operates the convolution operators
between the feature map and filter (followed by an activation
function, such as sigmoid or rectified linear unit (ReLU)). The
distribution of learnable parameters in filters affects the
distribution of values in the output feature maps. Therefore, large
weights tend to saturate feature maps towards O and 1 using
sigmoid or lead to computational overflow using ReLU.
Conversely, small weights may make the distribution of feature
maps tight around zero in deeper layers, leading to small
gradients and harmful model performance.

Probabilistic analysis of initialization of weights has been
studied to avoid saturation or small gradient problems. LeCun et
al. [5] showed that initializing the weights by randomly drawn
from a zero-mean distribution makes the distribution of output
nodes in the artificial neural network (ANN) model approximate a
standard deviation of 1. This unit standard deviation places the
node value in the linear curve of the sigmoid function so that the
model can converge efficiently. However, the sigmoid function
reduces the model’s ability to learn features (due to its non-zero
mean) and may induce important singular values in the Hessian
matrix. Glorot and Yoshua [6] clarified this phenomenon by
experimenting with a multi-layer perceptron with a sigmoid
activation function. They found that the sigmoid activation values
in all layers are saturated to 0. To solve this problem, they studied
and proposed a probabilistic approach to initialized weights so

that variances of these weights were similar across layers (we call
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it Glorot's method). This method helps the gradients propagate
with similar variance from lower to upper layers so that the model
may learn features efficiently. But their approach is based on
symmetric activation functions such as sigmoid, hyperbolic
tangent, and softsign, which may be unsuitable for ReLU. He et
al. [7] followed the ideas of Glorot and Yoshua [6] but examined
the rectifier nonlinearities functions such as ReLU. They
proposed a weights initialization method that works for nonlinear
rectifiers (He's method). Given a Resnet model with ReLU as the
activation function, Glorot's method makes the model stall,
especially on extremely deep models. In contrast, He's
initialization can make the model well converged.

In this paper, we investigate and compare the quality of Glorot
and He's methods on Mobilenet and Resnet models. We show
weight distributions, feature map values, and backpropagation
gradients in both models on the CNU weeds dataset. By
visualizing the feature map distribution, we realize that pointwise
and depthwise convolution in Mobilenet reduces the variance of
feature maps in deeper layers. Using the He's method, the shortcut
connection in Resnet causes the last layer to saturate, and both
models converge slower and generalize worse than using the
Glorot's method. In experiments, Mobilenet and Resnet have an
accuracy of 0.9568 and 0.9711 using Glorot's method; and 0.9471
and 0.9645 using He's method.

II. CNU WEEDS DATASET

We used the CNU weeds dataset for experiments. This dataset
was constructed by the Department of Electronics and Computer
Eng, CNU, Gwangju, under the supervision of Rural Development
Administration, Republic of Korea. Weeds images were captured
and collected by Korean plant taxonomists, whose majors are
botany. They collected weeds images on farms, fields in the
Republic of Korea by using high-definition resolution cameras.
Those species were classified and grouped by the international
standard of plant taxonomy. This dataset has 21 species; it has
208,477 images in total. As shown in Figure 2, the CNU weeds
dataset is an imbalanced dataset, where the species that has the
largest number of images is Galinsoga quadriradiata Ruiz & Pav.,
around 24300 images. In contrast, species Bidens bipinnata L. has
the smallest number of images, about 800 images.

Figure 1 shows an example of images on the CNU weeds
dataset. From an agricultural perspective, weeds belonging to a
particular family share some common characteristics in their
structure, making their morphology quite similar even though
they belong to two different species. On the other hand, weeds of

different species are entirely different in appearance.
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O 1. CNU &= dlolEf MIEo| U= 21Z&2| ola|x| ofA.
Fig. 1. Image examples of 21 species in the CNU
weeds dataset.

Number of images in species in the CNU weeds dataset
||I - = n ll-lnlll‘ll

J8 2. CNU &= Hlo|H MES| & 2.
Fig. 2. Distribution of species in the CNU weeds
dataset.

. CNNs
3-1 Mobilenet

Howard et al. [8] developed a CNN model capable of
deploying in low-memory devices called Mobilenet. This model
has two core layers: Depthwise and pointwise convolution.

In standard convolution, current feature maps are formed by a

multiplication and summation between previous feature maps and
current filters. However, many filters lead to a huge number of
learnable weights. To reduce the number of weights, Mobilenet
split this convolution into two types of convolutions: First, a
depthwise convolution applies a single convolutional filter for
each channel in the feature maps. Mathematically, we can

formulate depthwise convolution as

Grim = ZKi,j,m * Frviciarj—1im (D)
%]

where K is the depthwise convolutional filter of size

D, X D, X M. The m'™ filter in K is applied to the m!"
channel in 7.

Then, a pointwise convolution (or 1> 1 convolution) is
applied to aggregate information in the feature maps
channel-wise. A 3 X3 depthwise convolutional filter in
Mobilenet reduces 8 to 9 times computation than standard
convolution.

In experiment, Howard et al. [8] showed that Mobilenet got a
high accuracy on fine-grained object classification. So Mobilenet

is sufficient for the weeds classification problem.
3-2 Resnet

Typically, CNN architecture models have “stacked” layers:
One layer is placed on top of each layer. This type of deep
architecture results in vanishing or exploding gradient flows from
the bottom to the top layers, thus preventing the model from
converging. He et al. [9] presented a residual learning framework
to conveniently train an extremely deep model. Mathematically, a

building block of the Resnet model is formulated as
y=Flz, (W) +a @)

where = and y are the input and output feature maps of
residual block, F' is the residual mapping. In practice, this
function is a stack of convolutional layers, each layers contain
filters, and each i-th filter has a weights matrix ;. The
summation operation is performed by an element-wise addition of
the input feature maps x to the stacked layers and the output
feature maps of these stacked layers.

Resnet contains many building blocks. As explained in [10],

implementing Eq. (2) recursively, we have

Tpog =m0+ Flay,, Wi ) 3)
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for any shallow layer [. Assign Eq. (5) as «; and denote the
loss function as €, the gradient of € with respect to the feature

map ; is
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e/ 0z is unlikely to be zero, so the gradient does not get

vanish. With this building blocks, Resnet contains many deep

layers and avoid making the gradient vanish or explode.

IV. WEIGHT INITIALIZATION
4-1 Glorot

Glorot and Bengio [6] analyzed layers in an ANN model by
estimating the distribution of activation values (output of
symmetry, nonlinear activation function) and gradients. They
initialized weights followed by a random distribution and used the
standard stochastic gradient descent (SGD) to optimize weighs in
this model. They found that weights distribution in deeper layers
saturate toward 0. With the sigmoid activation function, this
behavior prevents the gradients from flowing backward so that
deeper layers may not learn valuable features. This phenomenon
also occurs for softsign and hyperbolic tangent but is less extreme
for sigmoid. In common, SGD from random initialization is
inefficient for a deep neural network.

To keep the information flow from saturating, they proposed a
new initialization method to preserve the variance of output

activation values between layers.
V (iyi'), Varlz'] = Varl2'] ®

] - . . . .’
where 2',z" is the activation outputs of layer ¢ and %

respectively. Finally Eq. (8) led to

Vi, Varz'] = Var|z] 9)
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where & was the network input.
Assume we use a symmetry, zero-centered activation function
with unit derivative at 0. Using 1™ order Taylor function, we can

approximate as a linear function as Eq. (10)

(z—0)==z (10)

In common, at layer 7, ANN models calculate a linear
combination s' between weights W' and output of the activation
function zi, and the bias term b' is added. That is,
s'=2' Wi+, and 2! :f(si). Assume weights are
initialized independently. To obtain similar variance, we calculate

Var|z'] = Var[f(siil)] (11)
= Varlz" "W+ (12)
= Varlz' ' W'+ Var[b' ™ !] (13)
Initializing the bias term as zero lead to Var [bi B 1] =0, we
have
Var|z'] = Var[ Sty (14
n;_;—1
= Varl 3 2w (15)
k=0
n;_;—1 , ]
= Y Varlzy 'wi '] (16)
k=0
n;_;—1
= (B P var(wi ")
k=0
+ [E(w ‘*1)] Var(z, ') (17)
+ Var( )Var( )

where is the number of nodes in layer. Assume we initialize
weights by using a zero-mean distribution function, then

Var|z E Var (w Var( 1) (18)

n,_ Var(W'™ DVar(z'™') (19

Eq. (19) is a recursive formular. Expanding to all layers, we have

—1
Varlz') = Varlz H "Var|[ W' (20)
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Setting n, Var| W} = 1 satisfy Eq. (8).

We also want similar gradient variance across layers, means that

6Cost 6Cost
| = Var| ]

Var| -
5s' 0s’

@D

where is a cost function of the ANN model. Using chain rule,

we have

Var| 5Cost]
0s'

& i 6C t ’ i
- V“’”“,;)“’k“ e S
= E Var (w Var( 56;0;9175 ) (23)

—0 5Sk

' 0Cost

Ny Var(W v T(asi—ﬁ) (24)

Eq. (24) is also having a recursive form. Expanding to all

layers, we have

Var| 5C'ost] _ (5C'ost Hn, N Var] ](25)

(58 i=

W] =1 satisfy Eq. (21). In total, for all,

we have the following system of equation.

Setting n; 4 Var|

[ niVar[W]Zl ]
(26)

n;y o, Var|[Ww]=1
; 2
]

s Varlw'] = 27)

ng TNy
Eq. (27) show that the variance of weights in layer ¢ depend

on the number of nodes in that layer and the next layer. Assume

we initialize weights followed by a uniform distribution,

Wi~ U(—a,a), then

. 6
“ \/”i+”i+1 @9
4-2He

Glorot's method is based on the assumption of using a
zero-centered symmetric function as the activation function.

However, this function is unsuitable for deep neural networks
because of the gradient vanish problem during backpropagation
[5]. Many popular CNN models such as VGG [11], Resnet [9],
Mobilenet [8] used rectifier nonlinear activation functions
because this function accelerates the training convergence [12]
and more generalizes the model than symmetry function [13]. He
et al. [7] investigated the variance condition of the output of
rectifier nonlinear activation function at layer in a stacked CNN

model, based on the procedure of Glorot’s method.

y = W+ (29)

where z is ke X< 1 vector, ¢ is the number of channels and &
is the filter size. W is a d X n weight matrix containing d
filters, n = k¢ is the number of connections. Because we stack
layers, the number of channels in current layer are equal to the

number of filters used in the previous layer, ¢, = d; _

At the beginning, we set the bias term b, =0 and
z = fly—y
zero-mean distribution (# ( W}) = 0), then

). Assume we initialize weights W, followed by a

Var (yl) = Var( Wz, + b,) 30)

= Var(Yuisi) a1
:nZ(Var(I/I/l)Var(x,)+(E(VI/l))2 Var(a:l) (32)
+ Var (W) (E(z,))?)

= n, Var(W,)(Var(z;) + (E(z;))?) (33)
= Var (W) E(x7) (34)

Using rectified linear unit function, we have x = f(y)

=max(0,y), so

+ oo
E(a:2)=/ 22 P(z)dx (35)
+ o
:/ max (0,y)>Ply)dy (36)
+ oo
= f y* Ply)dy (37)
0

Since y2 is a symmetric function around 0 and the input y is

1 [T
5/% Y’ Ply)dy (39

http://www.dcs.or.kr

zero-mean, we have

too
/ y Ply)dy =
0



1 e
- 5[00 (y— E(y))* Ply)dy (39)
= 5 Bly= B)] 0
_ % Var(y) @1)
So we have
Var(y,) = n, Var(W;) E(z}) (42)
= Var(W) 2 Varly_,) @)

Expand recursive Eq. (43) to all L layers, we have

Var(y,) H n;Var(w,)) (44)
=32

Var(yL)

Similar to Glorot’s method, He’s method maintains variance in
the activation output across all layers by setting a condition for all

layers,

%nl Var(W;) =1 (45)

Denote Az = de/dx, Ay = de/dy, where Az isa cX 1
vector, represents gradient at a pixel of this layer, Ay represents

k X k pixels in d channelks, and € is an objective function. We have

Y = Wi+ bz (46)
where VT/, is a ¢ n matrix, and n= k’d. Assume that W,

is initialized by a symmetric distribution around zero, then
ElAx J for all [. By using ReLU as the activation function,

£ (y;) =1 or 0 with equal probability, so

EA )
E(Ay,) = %: 0 (48)
:>E((Ayl)2) = Var(Ayl) (49)
= % Var(Az, . ) (50)

So, calculate variance in Eq. (47), we have

http://dx.doi.org/10.9728/dcs.2021.22.10.1721

Var(sz) = 7”;1 Var(wl) Var(Ay,) (51)

= %7;, Var(w,) Var(Ale) (52)

Put L layers together, we have
I
Var(Azx),) = Var(Az;, ) H n, Var(w,)) (53)

To maintain gradient variance in backpropagation, we set

0.5721 Var (wl) =1 for all layers [. He et al. [7] stated that

using either n; or nAl were sufficient for training the model. This
condition aims to keep the gradient from being exponentially
large or small.

He’s method show that the weights in layer are initialized with
a variance that depend only on the filter size in that layer. If we
initialize W, ~ U (—a,a), then

—4/6/n
o =
n

Mathematically, a filter of size n; applied to layer | has a
larger variance using He's method than that of Glorot. By
considering Eq. (28) and Eq. (54), Glorot requires an additional
filter of size m;, ; in the next layer [+ 1, which increases the

denominator value, hence smaller variance than He.

V. EXPERIMENTS

We used the CNU weeds dataset to train Mobilenet (88 layers)
and Resnet model (50 layers). We trained on 100 epochs, using
SGD with Nesterov momentum to optimize the cross-entropy loss
function. The learning rate was initialized as , and decay to and
at the 30" and 60™ epoch. The batch size was 128 for Mobilenet
and 32 for Resnet. We finetuned the model by adding a 256
dimension fully connected layer to avoid overfitting problems,
followed by a batch normalization layer and ReLU activation
function. We set the size of input color images to and normalized
to using Mobilenet, and per-pixel mean subtraction using Resnet,
as applied in [8] and [9].

We divided 60% of images in each species on the CNU Weeds
dataset as training set, 20% as validation set, and the remaining
20% as test set. During model training, we selected the weights

that had the highest accuracy on the validation set.
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Fig. 3. Box plot of values in filters, output of activation
layers, and gradients across layers, using Glorot
and He’s methods. Left column: Mobilenet. Right
column: Resnet

5-1 Weight Initialization

We initialized weights using a zero-mean Uniform distribution
with variance followed by Glorot and He's methods. Figures (a)
and (b) in Figure 3 show the box plot of values in filters, output of
activation layers, and gradients between layers. It turns out that
these values, using He's method, had a higher variance than
Glorot‘s method because mathematically, He's method only needs
the filter size in the current layer, while Glorot's method requires
the current and next layer. Both Mobilenet and Resnet have large
filter sizes at deeper layers, thus reducing its variance then. In
particular, variances of the output of activation layers in
Mobilenet decreased faster than those in Resnet, starting from the
depthwise and pointwise convolution layers. The large filter size

configuration caused this issue in the earlier layers in Mobilenet.

The first two rows of Figure 6 show the Mobilenet output
activation values distribution, using Glorot and He's methods. The
first layer in this model is a standard convolution. The left-most
figures in 2 rows show that the output of this layer had a higher
variance using He’s method than Glorot’s method. The last two
figures of Figure 6 and figure (c) in Figure 3 show that, on
average, using both initialization methods brought weights
approaching zero. Both methods had a small variance when we
went to deeper layers, mainly affected by two reasons: small input
values after normalization ([— 1,1]) and small variance of the
zero-mean depthwise and pointwise convolution layers.

The last two rows of Figure 6 show the distribution of Resnet
output activations. Like Mobilenet using Glorot's method, the
variance decreased as we went to deeper layers, as shown in
figure (d) of Figure 3. In contrast, using He's method increased

the variance rapidly. In the last layer, many weights are larger

than 10°, resulting in the maximum value of softmax activation
function saturated to 1. Thus, the gradient of all weights (after
applying chain rule) was approximate zero. Those large weight
values in deeper layers came from 2 reasons: For one layer, the
distribution variance using He's method is larger than using
Glorot‘s method, and the skip connection by a summation in
Resnet architecture increases the output values in deeper layers.
The distribution of gradients in Mobilenet is shown in the first
two rows in Figure 7, using Glorot and He’s methods. Figure (e)
in Figure 3 in both methods shows a lower variance in gradient in
deeper layers for Glorot‘s method. In contrast, gradients have
large values in deep layers for He’s method, except for the values

in pointwise convolution layers.

s(z), = —= (55)

izs(z)j(é,;j—s(z),t) (56)

The last two rows in Figure 7 show the distributions of
gradient values in the Resnet model, using Glorot and He's
methods. It shows that using Glorot‘s method, many weights had
non-zero gradients. Except for the first layer, all layers had
similar output variance, as shown in figure (f) of Figure 3. Using
He's method to initialize weights in the Resnet model, all the
gradients across layers were very close to zero. As explained
above, large variance in He's method and shortcut connection led
to enormous value in deeper layers. Therefore, max (s ) in Eq.

(55) (softmax function, A is the number of classes) was

http://www.dcs.or.kr
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approximately 1, and other elements in the softmax output vector
were close to 0. In this case, the partial derivative in Eq. (56),

where 5z'j is the Kronecker delta function, was approximately

zero with respect to any z;.
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3% 4. Mobilenete] £ & AZ JM. (a) Glorot MEEZ. (b)
He MET. (c) Glorot &4 3M. (d) He &4 I4M.

Fig. 4. Training and validation curve on Mobilenet. (a)
Accuracy, Glorot. (b) Accuracy, He. (c) Loss,
Glorot. (d) Loss, He.
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Training and validation curve on Resnet. (a)
Accuracy, Glorot. (b) Accuracy, He. (c) Loss,

Glorot. (d) Loss, He.

Fig. 5.
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Table 1. Performances of initialization methods, using

Glorot (Glo.) and He on Mobilenet (Mob.) and
Resnet (Res.). Four evaluation metrics: Accuracy
(Acc.), precision (Pre.), recall (Rec.), F1 score
(F1), and loss.

)

Acc. Pre. Rec. F1 Loss
Mob.,
Glo 0.9568 0.9418 0.9413 0.9413 0.1541
Mob., He | 0.9471 0.9347 0.9286 0.9313 0.1822
ng" 0.9711 0.9591 0.9614 0.9601 0.1119
Res., He | 0.9645 0.9503 0.9517 0.9508 0.1356

5-2 Performances

Figure 4 shows performances of training the Mobilenet, where
the weights were initialized using the Glorot and He's methods. It
indicates that Glorot‘s method helped the model to converge
faster than using He. By using Glorot's method, the model
increased in accuracy quickly, faster than He‘s method. In both
methods, the model converged at the 30th epoch.

Figure 5 shows performances of training the Resnet. Like what
was in Mobilenet, Glorot‘s method helped the model converge a
bit faster, starting in the 10th epoch. The model converged at 30th
epoch in both methods.

Table 1 shows performances of models using Glorot and He’s
methods as initialization methods. In particular, Glorot‘s method
showed the ability to generalize the model better than He‘s
method when all metrics using Glorot‘s method were 0.01 points
higher than He‘s method, except for the loss value showing that
Glorot‘s method was lower than He‘s method by nearly 0.03
points. Besides, Resnet had higher performance than Mobilenet,
regardless of the initialization method used.

5-3 Analysis

Experiences have shown that, for a model, using Glorot's
method to initialize weights makes the model converge faster and
more general than He's method. The first few epochs in Figure 4
and Figure 5 indicate that, for the CNU weeds dataset, Glorot's
method to initialize the weights placed these weights in
appropriate positions on the loss surface in both models. This
result is in contrast to [9], where Glorot's method (based on
symmetric activation functions) is more suitable for training a
weeds classification model than using He's method (based on
rectifier nonlinear activation functions). Remind that both models
use ReLU as the activation function. This problem occurs when
the architectures of both models are not deep enough to show the

advantage of He‘s method over Glorot‘s method.
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Glorot and He's methods is founded based on the assumption
of stacking standard convolution layers such as VGG or
conventional ANN model. However, both model architectures
have its characteristic that may not fit that assumption. As shown
in Figure 6, pointwise and depthwise convolution in Mobilenet
reduces the variance of the output of activation function, resulting
in the output in deeper layers close to zero. Shortcut connection in
Resnet enlarged variance when using He's method, but not in
Glorot’s method because the variance in Glorot’s method is
smaller than He’s method. This means that we might deal with
large weights initialization, resulting in saturation in Glorot’s
method is smaller than He’s method.

Vl. CONCLUSION

In this paper, we compared and analyzed the performance of
CNN models in the CNU Weeds dataset for weeds classification.
We trained the Mobilenet and Resnet models from scratch, using
Glorot and He's methods to initialize the weights. These authors
studied these methods in conventional ANN and CNN models to
maintain the variance of output of activation function across
layers. But in practice, specific layers in Resnet and Mobilenet
made these methods behave unexpectedly. Pointwise and
depthwise layers in Mobilenet reduced the variance to near zero,
and shortcut connection in He’s method expanded the variance in
deeper layers leading to saturation in softmax layer. Experiments
show that using Glorot's method placed weights in both models in
convenient positions so that models converged more quickly and

generally than using He's method.
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