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[요    약] 

최근 심층인공신경망 기술의 발전은 전문 지식(domain knoelwdge) 없이도 다차원 정보처리를 가능하게 한다. 그 중에서도 강화학

습은 자율주행 차, 드론과 같은 3차원 환경과의 상호작용을 통한 문제 해결 분야에서 활발히 연구되어왔다. 강화학습을 위한 물리 기

반 가상 시뮬레이터는 부동 소수점 계산이나 수치 적분상의 오차를 가지며, 이로 인해 현실 세계에서는 물리적으로 불가능한 의사 

결정자의 움직임을 학습하도록 하는 심각한 문제가 발생할 수도 있다. 따라서 본 연구에서는 잘못된 데이터의 학습과 저장으로 인해 

발생하는 강화학습의 문제를 해결하기 위하여 가치 최적화 강화학습 기반의 경험 데이터와 행동 정책 신경망 가중치 간의 관계를 이

용하여 데이터를 이전의 상태로 복구하기 위한 구조와 동작 방법을 제안한다. 

[Abstract] 

The recent development of deep artificial neural network technology enables high-dimensional information processing without domain 
knowledge. Among them, reinforcement learning has been actively researched in the field of problem solving through interaction with 3D 
environments such as autonomous vehicles and drones. In many physics-based virtual simulators, numerical calculations errors in floating 
point or integrations may trigger errors in real engines and bugs in various program. Because of those problems, it can cause serious 
problems that the decision-maker(agent) learns physically impossible movements. Therefore, we propose a structure and operation method 
to restore experience data and action policy neural network weights to solve reinforcement learning problems caused by learning and 
storing incorrect data.
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Ⅰ. Introduction 

Currently, as remarkable advancement has been made in 
hardware, the spotlight is focused on machine-learning areas 
based on deep artificial neural networks, requiring high 
computation speed and large amounts of data. Recently, many 
studies have been performed on machine-learning methods using 
deep artificial neural networks. As commercial models, they have 
gradually been used in wider applications. Furthermore, recent 
reinforcement learning-related studies have produced successful 
results, and subsequently, they have been frequently applied to 
applications such as resource management of server computers in 
network communication, and problems requiring thinking like 
humans, such as the game of go [1], [2].

Reinforcement learning is a machine learning method, 
whereby a decision-maker(agent), defined in a given 
environment, recognizes the current situation and collects 
information, and based on the collected information, creates 
action policies to solve the problem. In the past, because of 
hardware limitations of small memory size and slow computation 
speed, reinforcement learning was applied limitedly in areas 
having little information to be collected and with only a few 
variables that could change the situation, such as the maze game 
and tic-tac-toe [3].

However, as significant advancement has been made in 
hardware, and fundamental studies have been performed over 
many years, reinforcement learning has demonstrated successful 
results in areas requiring large amounts of learning data, such as 
3D games and go(baduk), as shown in Fig. 1. Based on these 
studies, additional technologies that solve problems by interacting 
with 3D environments, such as autonomous vehicles and drones, 
are actively studied now [4], [5]. 

그림 1. 단순한 환경 vs. 복잡한 환경

Fig. 1. Simple Environment vs. Complex Environment 

Like other machine learning methods, the reinforcement 

learning method usually requires repetitive experiments. 
However, in the real world, when reinforcement learning is 
performed with a robot as the decision-maker, the cost of the 
experiment is high, and problems such as accidents or damage 
may occur. Consequently, using a virtual simulator for 
reinforcement learning has become a trend.

Unlike the simulators of chess and go, which can discern 
whether the current state is realistically possible, physics-based 
simulators can result in various errors. For example, a robot may 
go through a wall due to a fast time step. This is the result of an 
error by the physical engine, which is produced due to 
floating-point error and numerical integration error. The problems 
of the simulator lead to physically impossible movements by the 
decision-maker in the real world, and the storing of incorrect 
experience data. Furthermore, when a high reward value is 
derived from the incorrect experience data, a serious problem of 
learning occurs: the action policy produces an incorrect result.

Therefore, this study designs a simulator structure of 
reinforcement learning, which can restore the previous state of 
experience data and action policy. This can resolve the 
aforementioned issues of reinforcement learning induced by 
incorrect data collection. This study prevents and resolves 
incorrect reinforcement learning through the relationship between 
the experience data and action policy neural network’s weight, 
based on the reinforcement learning of value optimization.

Ⅱ. Related Works 

2-1 Reinforcement Learning

Reinforcement learning is an area of machine learning, where 
software agents collect data through behaviors directly in a given 
environment and create action policies to solve problems through 
the collected data. This technique is suitable for problems in 
which learning data is difficult to obtain in advance and when 
continuous decision-making is required. Traditionally, it has been 
used in game artificial intelligence or robotics.

Fig. 2 shows the flow of reinforced learning. The 
decision-maker(agent) decides an action according to the action 
policy using the given state as an input, and receives the reward 
and next state values, based on the interaction with the 
environment [6], [7]. Afterwards, the action policy is updated 
using the reward value received as a result of the action and 
reinforcement learning algorithm. Until one episode is completed, 
the next state value is used as the given state, and the above 
process is repeated. Here, the values of five variables, state, 
action, reward, next state, and episode done, are grouped together, 
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and named ‘experience data’. Reinforcement learning has learned 
with rewards from interactions with the environment, rather than 
with well-classified data. So, it takes a lot of trial and error until 
the agent finds the best action under current situation. In 
particular, behaviors learned due to incorrect rewards often lead 
to serious problems.

Recently, a deep artificial neural network has been combined 
with the reinforcement learning methods, taking this technology a 
significant step forward. The latest methods are divided into value 
optimization and policy optimization, according to the target of 
optimization.

그림 2. 강화학습 흐름도

Fig. 2. Reinforcement Learning Flow

2-2 Deep Q-Network

Deep Q-Network (DQN) [8], [9] is one of the value 
optimization methods made at Google DeepMind, and a 
well-known algorithm that has become famous after displaying 
better performance than humans in the Atari2600 game. DQN is 
based on Q-Learning and allows deep artificial neural networks to 
take over the role of Q-functions.

Action policies are learned by using the collected experience 
data as learning data. In the case of a simulator, local overfitting 
sometimes occurs when the experience data is used as a training 
set as-is, because change is small between adjacent frames. 
Learning data is extracted randomly using the experience replay 
method, and then a batch training set is created in order to resolve 
the strong continuity between the experience data. The replay 
memory makes it possible to learn with less correlation and 
uniformly distributed data. As shown in Fig. 3, the experience 
data is saved in the replay memory, and when the space is all 
filled up, old experience data is taken out, and new experience 
data is added in, following the first-in, first-out (FIFO) scheme. 
We want to restore the previous state using the experience data 
removed from the replay memory. 

그림 3. 심층 Q-네트워크 흐름도

Fig. 3. Deep Q-Network Learning Flow

2-3 OpenAI Gym

OpenAI Gym [10], [11] is a reinforcement learning platform 
that provides various environments for the development of 
general-purpose artificial intelligence. It is widely used in a 
majority of reinforcement learning studies to check and verify the 
validity of studies and test the algorithms. OpenAI Gym provides 
reinforcement learning environments such as a 2D physical 
environment through Box2D, including home video games like 
Atari 2600, and a 3D physical environment using Mujoco [12]. 
OpenAI Gym consistently provides the interfaces of all 
environments, so that the reinforcement learning algorithm can be 
easily changed. The basic interface consists of the following,

• Reset: is an interface that resets the reinforcement learning 
environment, and the initial state values are returned as soon as it 
is called.

• Render: outputs the current environment on the screen.
• Step: receives the action value as a parameter value, and 

moves the agent through the action and returns the Next State, 
Reward, and Episode Done.

However, OpenAI Gym has some problems in implementing 
real 3D physics and screen output objects directly through high 
abstraction.

Ⅲ. The Proposed Method

Reinforcement learning platforms such as OpenAI Gym do not 
support the restoration of experience data when weight values 
cause incorrect behavior. Therefore, we need to define the 
learning situation in a 3D physics-based simulator which 
reinforcement learning algorithms can be applied, and also to 
propose a 3D simulation system to restore into previous situation 
when a weight value causes incorrect behavior.
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3-1 Management of Experience Data

Fig. 4 shows a diagram for the experience data management 
proposed in this paper. In the figure, “Environment” refers to the 
virtual simulator where the problem will be solved. “Policy 
Script” usually includes the action policies and the value 
optimization-based deep reinforcement learning algorithm for 
learning the action policies. “Experiences” of Policy Script 
correspond to the replay memory of DQN and are logically 
divided into two, while maintaining a queue data structure. 
“Policy weight” indicates the weight value of the learning policy 
neural network. “Policy” refers to the action policy network, 
“exp_count” is the number of experience data, and “max_count” 
is the maximum number of experience data. 

“Storage” refers to the storage where the restoration values are 
kept. The “Experiences” stores the old values coming out from 
the Policy Script’s experiences because they are outdated, and has 
the FIFO structure like a replay memory. Logically, there are two 
or more regions. “Policy weights” facilitates restoration of the 
weight value, by storing the weight value prior to update via 
learning in the Policy Script. “Exp_count” and “max_count” have 
the same roles as those of Policy Script. “Block_size” is the size 
of a block of experiences divided logically, and refers to the 
amount of experience data that can be saved.

그림 4. 경험 데이터 관리 모델

Fig. 4. Experience Data Managing Diagram

3-2 Storing Experience Data and Weight

As the simulator episodes of reinforcement learning are 
processed, data is stored in the “experiences” of Policy Script. 
Furthermore, when the experience data of Policy Script exceeds 
max_count, the values are saved in the Storage, as shown in Fig. 

5. Prior to executing learning based on the experience data, the 
value of Policy Script’s policy weight is saved in the Storage’s 
policy weights. Then, the weight is updated through the 
reinforcement learning algorithm. Afterwards, the old experience 
data is taken out and stored in “experiences” of Storage. This is 
called an experience data block.

Suppose the experience data block and the weight value stored 
most recently in the Storage are Bt and Wt; then, the value of Wt 
is a value learned by making the batch data from the experience 
data of Bt-1 and Bt.

그림 5. 경험데이터와 가중치 값의 저장

Fig. 5. Storing Experience Data and Policy Weight Diagram 

3-3 Restoring Experience Data and Weight

Based on the characteristics of Bt and Wt mentioned in the 
previous section, the Policy Script’s policy weights and 
experience data can be restored when a physically incorrect action 
by the decision-maker is observed on the simulator, as shown in 
Fig. 6. First, the frame N, the desired time point of restoration, is 
received as an input. Next, the current value of exp_count stored 
in the Policy Script is subtracted. Suppose the subtracted value is 
R. Then, the action policy network’s weight, and the experience 
data, are restored using one of the following three methods, 
according to the stored value of R.

• When R is a positive number and greater than or equal to 
block_size:
There is no data exchange with Storage. Also, the experience data 
of Policy Script is removed, according to the input N. Because the 
weight value is not changed, an incorrect action by the 
decision-maker may occur again.

• When R is a positive number and less than block_size: 
The experience data of the Policy Script is removed, according to 
the user input N. Subsequently, the experience block Bt stored in 
the Storage recently, is added at the end of experiences. Next, the 



Resolution of Abnormal Behaviors in 3D Physically-Based Simulation

1493 http://www.dcs.or.kr

value of policy weight is changed to Wt saved recently in the 
Storage.

• When R is a negative number: 
After changing the value sign of R to the positive sign, it is 
divided by the block size. Suppose the quotient excluding the 
remainder is q; then, first, the Policy Script’s experiences are all 
emptied. Subsequently, the experience data removed earlier by as 
many as the positive value of R from the total experiences of 
block B(t-q-1) and a block B(t-q) in the Storage, are stored in the 
Policy Script’s experiences. Next, the value of policy weight is 
updated with W(t-q-1). Fig. 6 shows a diagram for the above 
processes.

그림 6. 경험 데이터와 가중치의 복구

Fig. 6. Restoring Experience Data and Policy Weight Diagram  

Ⅳ. Conclusion

Various studies have demonstrated that reinforcement learning 
can be applied to complex environments. Even when the states 
are difficult to define, like those of the real world. Accordingly, 
studies have been actively carried out for a decision-maker(agent) 
interacting with a variety of 3D environments. However, because 
of the cost issue and the risk of accidents, studies are usually 
performed using a simulator, rather than in the real world. 
Because a simulator expresses a real world’s physical 
phenomenon, based on discretization using a short time step, it is 
not free from the floating-point error and numerical integration 
error. Consequently, physically impossible actions are sometimes 
displayed. Such a result leads to a serious risk when the action 
policy is learned as-is. This study has proposed an architecture 
and operating method to restore the weight value of the learning 
policy neural network when it leads to an incorrect action. The 
architecture and operating method are founded on restoring data 

using the relationship between the experience data and action 
policy neural network’s weights, based on the reinforcement 
learning of value optimization.

In future works, we try to implement and test a 3D 
physics-based simulator that applies the Policy Script in this 
paper. We also add the data restoration function and visualization 
tool to the existing reinforcement learning platform. Through 
these upgrades, we can expect the stable reinforcement learning 
platform that help to overcome the wrong solutions such as 
abnormal stop of the simulator.
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