. CXg2=53=2X
e Journal of Digital Contents Society
* Vol. 21, No. 8, pp. 1489-1494, Aug. 2020 M) Check for updates

AH S2l71dE Al=g0 [MoflA{ 2] H[Z XL S ol

W
J

) “ =4 [
'R e TS ESEDt BALTY
*RAYED TSHS 8T 1S

Resolution of Abnormal Behaviors in 3D Physically-Based
Simulation

Gi-Jin Hong' - Young-Bong Kim®"

"Doctor's Course, Department of IT Convergence and Application Engineering, Pukyong National University
ZProfessor, Department of IT Convergence and Application Engineering, Pukyong National University, Busan 48513,
Korea

2 of]

HT AZFA A 714] -8 HE %] 2] (domain knoelwdge) §10]1 % T AR A S 71581 gt} 1 Foll A = 73}t
&2 g5 2}, =23 28331 3 o] AT AHE-S E3k A d Hokol| A Buls] Aol gkt aleksS 95 Bl V]
1k 7 Al B OJE = B 2 Alxtelu 4] A de] 92k 7HAH, o & Qls) #4 AlAllM = EEldo s BVl oA)
AR] A DS SFIlES ol A2 A 2 S = Q) whebA] & ATl A A5 E dlo|E 9] sk Ao 2 13
WhAsh= A8l elge] TA1E sl sk flsle] 7hx] A3 ds)sls 7Inke] A3 diolE e s A A4 7R ko] BAIE 9]
L3l glo|EE o] 9] e 2 B8] $1 8k o) B2 S Aokt
[Abstract]

The recent development of deep artificial neural network technology enables high-dimensional information processing without domain
knowledge. Among them, reinforcement learning has been actively researched in the field of problem solving through interaction with 3D
environments such as autonomous vehicles and drones. In many physics-based virtual simulators, numerical calculations errors in floating
point or integrations may trigger errors in real engines and bugs in various program. Because of those problems, it can cause serious
problems that the decision-maker(agent) learns physically impossible movements. Therefore, we propose a structure and operation method
to restore experience data and action policy neural network weights to solve reinforcement learning problems caused by learning and

storing incorrect data.
MOIo| : A oI, Y3t gy, =7, Jtet AIBOIE, 75X gt

Key word : Experience Data, Reinforcement Learning, Restoration, Virtual Simulator, Weight Value

http://dx.doi.org/10.9728/dcs.2020.21.8.1489 . .
Received 22 June 2020; Revised 17 July 2020

® @ This is an Open Access article distributed under Accepted 31 July 2020
@ e the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons *Corresponding Author: Young-Bong Kim
.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial po g ’ g g
use, distribution, and reproduction in any medium, provided the Tel: +82-051-629-6248

original work is properly cited. i .
E-mail: ybkim@pknu.ac.kr

Copyright (©) 2020 The Digital Contents Society 1489 http://www.dcs.or.kr pISSN: 1598-2009 elSSN: 2287-738X

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2020.21.8.1489&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5

CIx ™ 3=

| . Introduction

Currently, as remarkable advancement has been made in
hardware, the spotlight is focused on machine-learning areas
based on deep artificial neural networks, requiring high
computation speed and large amounts of data. Recently, many
studies have been performed on machine-learning methods using
deep artificial neural networks. As commercial models, they have
gradually been used in wider applications. Furthermore, recent
reinforcement learning-related studies have produced successful
results, and subsequently, they have been frequently applied to
applications such as resource management of server computers in
network communication, and problems requiring thinking like
humans, such as the game of go [1], [2].

Reinforcement learning is a machine learning method,
defined

environment, recognizes the current situation and collects

whereby a decision-maker(agent), in a given
information, and based on the collected information, creates
action policies to solve the problem. In the past, because of
hardware limitations of small memory size and slow computation
speed, reinforcement learning was applied limitedly in areas
having little information to be collected and with only a few
variables that could change the situation, such as the maze game
and tic-tac-toe [3].

However, as significant advancement has been made in
hardware, and fundamental studies have been performed over
many years, reinforcement learning has demonstrated successful
results in areas requiring large amounts of learning data, such as
3D games and go(baduk), as shown in Fig. 1. Based on these
studies, additional technologies that solve problems by interacting
with 3D environments, such as autonomous vehicles and drones,

are actively studied now [4], [5].

- O x[x
' XX O
[ee)(e)]

VS,
- r’: =
S
- ®
- :.—’
.°:=§’-
"‘i 8.‘! =1
T8 1. chest 2R vs. SEE 2R

Fig. 1. Simple Environment vs. Complex Environment

Like other machine learning methods, the reinforcement

http://dx.doi.org/10.9728/dcs.2020.21.8.1489

1490

X|(J. DCS) Vol. 21, No. 8, pp. 1489-1494, Aug. 2020

learning method usually requires repetitive experiments.
However, in the real world, when reinforcement learning is
performed with a robot as the decision-maker, the cost of the
experiment is high, and problems such as accidents or damage
may occur. Consequently, using a virtual simulator for
reinforcement learning has become a trend.

Unlike the simulators of chess and go, which can discern
whether the current state is realistically possible, physics-based
simulators can result in various errors. For example, a robot may
go through a wall due to a fast time step. This is the result of an
error by the physical engine, which is produced due to
floating-point error and numerical integration error. The problems
of the simulator lead to physically impossible movements by the
decision-maker in the real world, and the storing of incorrect
experience data. Furthermore, when a high reward value is
derived from the incorrect experience data, a serious problem of
learning occurs: the action policy produces an incorrect result.

Therefore, this study designs a simulator structure of
reinforcement learning, which can restore the previous state of
experience data and action policy. This can resolve the
aforementioned issues of reinforcement learning induced by
incorrect data collection. This study prevents and resolves
incorrect reinforcement learning through the relationship between
the experience data and action policy neural network’s weight,

based on the reinforcement learning of value optimization.

. Related Works

2-1 Reinforcement Learning

Reinforcement learning is an area of machine learning, where
software agents collect data through behaviors directly in a given
environment and create action policies to solve problems through
the collected data. This technique is suitable for problems in
which learning data is difficult to obtain in advance and when
continuous decision-making is required. Traditionally, it has been
used in game artificial intelligence or robotics.

Fig. 2

decision-maker(agent) decides an action according to the action

shows the flow of reinforced learning. The
policy using the given state as an input, and receives the reward
and next state values, based on the interaction with the
environment [6], [7]. Afterwards, the action policy is updated
using the reward value received as a result of the action and
reinforcement learning algorithm. Until one episode is completed,
the next state value is used as the given state, and the above
process is repeated. Here, the values of five variables, state,
action, reward, next state, and episode done, are grouped together,

and named ‘experience data’. Reinforcement learning has learned
with rewards from interactions with the environment, rather than
with well-classified data. So, it takes a lot of trial and error until
the agent finds the best action under current situation. In
particular, behaviors learned due to incorrect rewards often lead
to serious problems.

Recently, a deep artificial neural network has been combined
with the reinforcement learning methods, taking this technology a
significant step forward. The latest methods are divided into value

optimization and policy optimization, according to the target of

optimization.
; Environment
reward |state
Agent
k4
» Leaming Algorithm]1
action
update
Y
Policy]4 i

a8 2. dslets 58%

Fig. 2. Reinforcement Learning Flow

2-2 Deep Q-Network

Deep Q-Network (DQN) [8], [9] is one of the value
optimization methods made at Google DeepMind, and a
well-known algorithm that has become famous after displaying
better performance than humans in the Atari2600 game. DOQN is
based on Q-Learning and allows deep artificial neural networks to
take over the role of Q-functions.

Action policies are learned by using the collected experience
data as learning data. In the case of a simulator, local overfitting
sometimes occurs when the experience data is used as a training
set as-is, because change is small between adjacent frames.
Learning data is extracted randomly using the experience replay
method, and then a batch training set is created in order to resolve
the strong continuity between the experience data. The replay
memory makes it possible to learn with less correlation and
uniformly distributed data. As shown in Fig. 3, the experience
data is saved in the replay memory, and when the space is all
filled up, old experience data is taken out, and new experience
data is added in, following the first-in, first-out (FIFO) scheme.
We want to restore the previous state using the experience data

removed from the replay memory.

Resolution of Abnormal Behaviors in 3D Physically-Based Simulation

action
Agent expertence data
state T
) reward : update
Environment |- — Policy |«
experience
data Replay Memory Batch Data
: —
i

a8 3. 415 QU ES3 585
Fig. 3. Deep Q-Network Learning Flow

2-3 OpenAl Gym

OpenAl Gym [10], [11] is a reinforcement learning platform
that provides various environments for the development of
general-purpose artificial intelligence. It is widely used in a
majority of reinforcement learning studies to check and verify the
validity of studies and test the algorithms. OpenAl Gym provides
reinforcement learning environments such as a 2D physical
environment through Box2D, including home video games like
Atari 2600, and a 3D physical environment using Mujoco [12].
OpenAl Gym consistently provides the interfaces of all
environments, so that the reinforcement learning algorithm can be
easily changed. The basic interface consists of the following,

* Reset: is an interface that resets the reinforcement learning
environment, and the initial state values are returned as soon as it
is called.

* Render: outputs the current environment on the screen.

* Step: receives the action value as a parameter value, and
moves the agent through the action and returns the Next State,
Reward, and Episode Done.

However, OpenAl Gym has some problems in implementing
real 3D physics and screen output objects directly through high

abstraction.

. The Proposed Method

Reinforcement learning platforms such as OpenAl Gym do not
support the restoration of experience data when weight values
cause incorrect behavior. Therefore, we need to define the
learning situation in a 3D physics-based simulator which
reinforcement learning algorithms can be applied, and also to
propose a 3D simulation system to restore into previous situation
when a weight value causes incorrect behavior.

http://www.dcs.or.kr

CIXE 28 =

3-1 Management of Experience Data

Fig. 4 shows a diagram for the experience data management
proposed in this paper. In the figure, “Environment” refers to the
virtual simulator where the problem will be solved. ‘“Policy
Script” usually includes the action policies and the value
optimization-based deep reinforcement learning algorithm for
learning the action policies. “Experiences” of Policy Script
correspond to the replay memory of DQN and are logically
divided into two, while maintaining a queue data structure.
“Policy weight” indicates the weight value of the learning policy
neural network. “Policy” refers to the action policy network,
“exp_count” is the number of experience data, and “max_count”
is the maximum number of experience data.

“Storage” refers to the storage where the restoration values are
kept. The “Experiences” stores the old values coming out from
the Policy Script’s experiences because they are outdated, and has
the FIFO structure like a replay memory. Logically, there are two
or more regions. “Policy weights” facilitates restoration of the
weight value, by storing the weight value prior to update via
learning in the Policy Script. “Exp_count” and “max_count” have
the same roles as those of Policy Script. “Block_size” is the size
of a block of experiences divided logically, and refers to the

amount of experience data that can be saved.

Policy Seript

experiences i
! atite Environment
D:] reward
: : - polic B ¥
olicy weight poticy :
poniey weig - exp_count action
D -max_count
r'y
Storage
L 4
experiences
: L - exp_count
policy weights hlock size
- max_count

J8 4. 4 ooy gz =Y
Fig. 4. Experience Data Managing Diagram

3-2 Storing Experience Data and Weight

As the simulator episodes of reinforcement learning are
processed, data is stored in the “experiences” of Policy Script.
Furthermore, when the experience data of Policy Script exceeds

max_count, the values are saved in the Storage, as shown in Fig.

http://dx.doi.org/10.9728/dcs.2020.21.8.1489

1492

st3]|=&X|(J. DCS) Vol. 21, No. 8, pp. 1489-1494, Aug. 2020

5. Prior to executing learning based on the experience data, the
value of Policy Script’s policy weight is saved in the Storage’s
policy weights. Then, the weight is updated through the
reinforcement learning algorithm. Afterwards, the old experience
data is taken out and stored in “experiences” of Storage. This is
called an experience data block.

Suppose the experience data block and the weight value stored
most recently in the Storage are Bt and Wt; then, the value of Wt
is a value learned by making the batch data from the experience
data of Bt-1 and Bt.

Policy Seript | experiences
[_ : (2) Update
licy weight et
(3;) Push a half POD“’-‘ weigh policy weight
O eXpETIences 4
|
Storage

experiences ‘

LITTTTHK

policy weights
[T]
g 5. ZdEOlolE et JtEA| gtel M

Fig. 5. Storing Experience Data and Policy Weight Diagram

(1) Push
policy weight

3-3 Restoring Experience Data and Weight

Based on the characteristics of Bt and Wt mentioned in the
previous section, the Policy Script’s policy weights and
experience data can be restored when a physically incorrect action
by the decision-maker is observed on the simulator, as shown in
Fig. 6. First, the frame N, the desired time point of restoration, is
received as an input. Next, the current value of exp_count stored
in the Policy Script is subtracted. Suppose the subtracted value is
R. Then, the action policy network’s weight, and the experience
data, are restored using one of the following three methods,
according to the stored value of R.

* When R is a positive number and greater than or equal to

block_size:
There is no data exchange with Storage. Also, the experience data
of Policy Script is removed, according to the input N. Because the
weight value is not changed, an incorrect action by the
decision-maker may occur again.

* When R is a positive number and less than block_size:

The experience data of the Policy Script is removed, according to
the user input N. Subsequently, the experience block Bt stored in
the Storage recently, is added at the end of experiences. Next, the

value of policy weight is changed to Wt saved recently in the
Storage.
* When R is a negative number:

After changing the value sign of R to the positive sign, it is
divided by the block size. Suppose the quotient excluding the
remainder is q; then, first, the Policy Script’s experiences are all
emptied. Subsequently, the experience data removed earlier by as
many as the positive value of R from the total experiences of
block B(t-g-1) and a block B(t-q) in the Storage, are stored in the
Policy Script’s experiences. Next, the value of policy weight is
updated with W(t-g-1). Fig. 6 shows a diagram for the above

processes.

(1) R =N —exp _count
(2) q = |R|/block_size

Policy Seript | experiences
policy weight (3) Push experiences
in— data form B(t —q — 1)
and B(t—q) — R
Storage | experiences
I 11
L | 1
policy weights (4) Restoring policy weight
l . | | ‘ fromW(t—q—1)

T8 6. Ze Hlo[Elet 7IEA|o| =7
Fig. 6. Restoring Experience Data and Policy Weight Diagram

V. Conclusion

Various studies have demonstrated that reinforcement learning
can be applied to complex environments. Even when the states
are difficult to define, like those of the real world. Accordingly,
studies have been actively carried out for a decision-maker(agent)
interacting with a variety of 3D environments. However, because
of the cost issue and the risk of accidents, studies are usually
performed using a simulator, rather than in the real world.
Because a simulator expresses a real world’s physical
phenomenon, based on discretization using a short time step, it is
not free from the floating-point error and numerical integration
error. Consequently, physically impossible actions are sometimes
displayed. Such a result leads to a serious risk when the action
policy is learned as-is. This study has proposed an architecture
and operating method to restore the weight value of the learning
policy neural network when it leads to an incorrect action. The

architecture and operating method are founded on restoring data

Resolution of Abnormal Behaviors in 3D Physically-Based Simulation

using the relationship between the experience data and action
policy neural network’s weights, based on the reinforcement
learning of value optimization.

In future works, we try to implement and test a 3D
physics-based simulator that applies the Policy Script in this
paper. We also add the data restoration function and visualization
tool to the existing reinforcement learning platform. Through
these upgrades, we can expect the stable reinforcement learning
platform that help to overcome the wrong solutions such as

abnormal stop of the simulator.

Acknowledgment

This work was supported by a Research Grant of Pukyong
National University(2019 year).

References

[1] X. Dutreilh, S. Kirgizov, and O. Melekhova, “Using
reinforcement learning for autonomic resource allocation in
clouds: towards a fully automated workflow”, ICAS, pp.
67-74,2011.

[2] D. Silver, J. Schrittwieser, and K. Simonyan, ‘“Mastering the
game of Go without human knowledge”, Nature, Vol.
550.7676, pp. 354-359, 2017.

[3] P. Dayan, and G.E. Hinton, “Feudal reinforcement learning”,
In Advances in neural information processing systems, pp.
71-278, 1993.

[4] In Yong Hwang, Soo Hyun Wang, Seung Min No, and Doo
Seop Eom, “Comparison and analysis of autonomous flight
drones algorithm based on deep reinforcement learning”, in
Proceedings of Symposium of the Korean Institute of
communications and Information Sciences, pp. 630-631,
2018.

[5] Hongsuk Yi, Eunsoo Park, and Seungil Kim, “Deep
Reinforcement Learning for Autonomous Vehicle Driving”,
in Proceedings of Symposium of the Korean Information
Science Society, pp. 784-786, 2017.

[6] A. Eitan. Constrained Markov decision processes, CRC
Press, Boca Raton, Florida, 1999.

[7] Y. Li, “Deep Reinforcement Learning : An Overview”,
https://arxiv.org/abs/1701.07274, 2017.

[8] V. Mnih Silver, K, Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, J.
Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D.

http://www.dcs.or.kr

C|X|& 28l = 5+5|=2X|(J. DCS) Vol. 21, No. 8, pp. 1489-1494, Aug. 2020

Hassabis, “Human-level control through deep reinforcement
learning”, Nature, Vol. 518, pp. 529-533, 2015.

[9] Christopher Watkins, and Peter Dayan, “Q-learning”,
Machine learning, Vol. 8, pp. 279-292, 1992

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J.
Schulman, J. Tang, and W.Zaremba, “OpenAl Gym”,
https://arxiv.org/abs/1606.01540, 2016.

[11] M. G. Bellemare, “The arcade learning environment: An
evaluation platform for general agents”, Journal of Artificial
Intelligence Research, Vol 47, pp. 253-279, 2013

[12] Emanuel Todorov, Tom Erez, and Yuval Tassa, “Mujoco:
A physics engine for model-based control”, 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pp. 5026-5033, 2012

E7|Z(Gidin Hong)

0209~ A RAWSE TR EI 4 58 7 d74
wpAol: AFE 1992, 3D e AEdlA

Z4AS(YoungBong Kim)

e
%
)

(R
o oy
£

>

>~

=

(O}
=
1
&
L
>
=

19959~ A - A

Aok AFE LA, 3D AFE AR, A4A, ABAE 5

http://dx.doi.org/10.9728/dcs.2020.21.8.1489 1494

	Resolution of Abnormal Behaviors in 3D Physically-Based Simulation
	요약
	Abstract
	Ⅰ. Introduction
	Ⅱ. Related Works
	Ⅲ. The Proposed Method
	Ⅳ. Conclusion
	References

