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[요    약]

신경망 번역이 기계 번역의 새로운 패러다임이 된 이후, 번역은 많은 양의 병렬 말뭉치에 의존하게 되었다. 번역과 달리 언어 모델

은 하나의 언어로 된 말뭉치를 사용하는데, 데이터는 풍부하다. 언어모델의 말뭉치를 신경망 기계 번역에 이용하기 위한 몇가지 방

법들이 제안되었다. 이 논문에서는 학습된 언어 모델을 신경망 기계 번역에 이용하는 새로운 방법을 제시한다. 번역의 입력언어와 

출력언어에 해당되는 두 개의 언어 모델을 훈련시킨 뒤, 언어 모델들의 워드 임베딩 행렬들을 신경망 기계 번역으로 이전하는 방법

이다. 제안된 방법을 검증하기위해 영어-독일어 그리고 영어-핀란드어의 데이터로 실험했고, 기존모델에 비해 40% 정도의 크기만 

가지는 모델로도 성능이 같거나 조금 더 좋아지는 결과(+0.57 BLEU 점수)를 확인했다.

[Abstract]

Since neural machine translation (NMT) has become a new paradigm in machine translation, it relies on large amounts of parallel 
corpora to train neural networks, while language models (LMs) are trained on abundant monolingual corpus. Thus, there have been a few 
approaches to use monolingual corpus in training NMT systems. In this paper, we propose to use pretrained LM for NMT. After training 
two LMs for source and target languages of NMT, we transfer the word embedding matrices from the LMs to the target NMT model. In 
the experiments with the task of En-De and En-Fi translation, the proposed method keeps the translation quality the same or slightly better 
(up to +0.57 BLEU) using only around 40% of the previous model size.
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Ⅰ. Introduction 

As a deep learning application [1], neural machine 
translation (NMT), which is an end-to-end approach to machine 
translation [2, 3, 4] has widely become adopted in machine 
translation research, as evidenced by its success in a recent 
WMT’16 translation task [5, 6, 7].

To train the end-to-end neural network model, NMT relies 
on large amounts of parallel corpus, and some language pairs 
suffer a lack of such corpus. Since monolingual corpus is 
abundant for any language, there have been several works to 
use monolingual corpus to help train NMT models in addition 
to parallel (bilingual) corpus [8, 9]. Contrary to NMT models, 
language models (LMs) are trained on monolingual corpus, by 
maximizing the likelihood of the next word, given the previous 
words in the sentence. Thus, the previous approaches to use 
monolingual data in NMT are based on combining LM and 
NMT. In those works, they focused on the structure of the 
translated sentences from NMT expecting that such structure 
can be captured by LM. Note that in those previous work, only 
one LM on the target language is combined to the NMT 
decoder.

In this paper, we focus on the word embedding rather than 
the sentence structure. The meaning of a word in the vocabulary 
can be learned by training in natural language processing tasks 
(e.g. language modeling or neural machine translation) and 
represented by a word embedding vector. In other words, 
training brings similar words close to each other in the word 
embedding space and dissimilar words far away from each 
other. 

The rationale of our work is twofold. First, we notice that 
around 60% of NMT model parameters are used for word 
embedding. If we can avoid training the word embedding in 
NMT, our model size can be significantly decreased, which 
might imply that the NMT model needs a less amount of 
parallel data. Also, we can detour the rare words problem [10, 
11, 12, 7]. Second, we assume that word embedding in LM and 
NMT can be shared, because their representations show 
semantic meanings of words [3] and that the semantic meanings 
represented by word embedding vectors are not significantly 
different between LM and NMT. That is, instead of training the 
word embedding vectors in NMT, we want to just transfer the 
ones from LM to NMT. 

After training two LMs for both source and target languages 
in NMT, we transfer the word embedding matrices from LMs 
tot he NMT model. In the experiments with the task of En-De 
and En-Fi translation, the proposed method keeps the 

translation quality the same or even slightly better (up to +0.57 
BLEU for En-Fi) using only around 40% of the previous model 
size for NMT.

Ⅱ. Background: LM and NMT

  In this section, we give a brief overview of LMs and NMT 
models focusing on word embedding. See [13] and [5] for 
details. 

2-1 Language Model

LMs reflect the syntactic and semantic regularities of a given 
language for recognition or generation. Generally, LMs 
calculate a probability of a word sequence to measure how 
likely the sequence(or a sentence) is. Given a sentence 
 … , the probability is calculated by factorized 

conditional probabilities as follows:

 ⋯ 
  



 
    (1)

where   is the -th word, and 
    stands for a word 

sequence  …   

A neural network with one-hot vectors as its input can learn 
the word embedding vectors [14]. In neural network based 
language modeling (NNLM), the conditional probabilities are 
implemented by forward propagation in neural networks, and 
the first NNLM was based on feed forward neural network [15], 
which generalizes to unseen or rare -grams. To overcome the 
limitation of the Markov assumption in feed forward neural 
network LMs, RNNLM has been proposed [13].   The ordinary 
RNN computes the output sequence of hidden node from an 
input sequence, which is obtained by

    (2)

where  can be implemented as long short-term memory 
(LSTM [16]), gated recurrent units (GRU[17]) or any other 
RNN units [18], and  is the word embedding of .

   (3)

where     is a one-hot vector defined as
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     if    
(4)

∈ℝ ×    is a word embedding matrix, where   and 
  are the word embedding dimension and the vocabulary 
size, respectively. 
  Finally, the output of the neural networks is a probability 
distribution for the next word

    ∝exp  (5)

where    is the -th row vector of the matrix, ∈ℝ  ×   
and  is bias. 

The LM model is usually trained to maximize the 
log-probability of the correct prediction of the next word, given 
the previous words in the sequence using a large training 
parallel corpus. This is done by stochastic gradient de- scent. It 
has been observed that these unsupervised word embedding 
vectors can be used to greatly improve supervised natural 
language tasks [19, 20]

2-2 Neural Machine Translation

The attention-based NMT system computes a conditional 
distribution over translations given a source sentence 

  


…  

    ∝exp   (6)

This is done by a neural network that consists of an encoder 
and a decoder. The encoder is often implemented as a 
bidirectional recurrent neural net- work that reads the source 
sentence word-by-word. Before being read by the encoder, each 

source word 
∈  is projected onto a continuous vector 

space:

 


  (7)

where  ∈ℝ ×    is a source word embedding matrix. 
The resulting sequence of the word embedding vectors is then 
read by the bidirectional encoder recurrent network which 
consists of forward and reverse recurrent networks. 

The decoder consists of two sub-components–a recurrent 
network and the attention mechanism [21]. The recurrent 
network in the decoder is unidirectional, which computes the 
conditional distribution over the next target word, given all the 

previous target words and the source sentence:

 ′    (8)

    The decoder recurrent network maintains an internal hidden 
state  . At each time step ′ , it first uses the attention 

mechanism to make a context vector,  ′ , from the annotation 

vectors that are the output of the encoder. The decoder recurrent 
network updates its own hidden state by

  ′    ′  ′   ′ (9)

Like the encoder,   can be implemented as either an LSTM 

or GRU.  ′   is a target-side word embedding vector 

computed by

 ′     ′   (10)

similarly to Eq. (7). The probability of each word   in the target 
vocabulary ′  is computed by

 ′    ′  ∝exp  ′  (11)

  
As in LM, the NMT model is usually trained to maximize 

the log-probability of the correct translation, given a source 
sentence, which is done by stochastic gradient descent.

Ⅲ. Word Embedding Transfer

The main contribution of this paper is to transfer word 
embedding from LM to NMT. In the two LMs for source and 
target languages in NMT, we obtain two word embeddings.
  To transfer the word embedding from LM to NMT, we have to 
match two factors: vocabularies and embedding dimensions. 
We build up a dictionary for each language based on the 
monolingual corpus, expecting the monolingual data to include 
more accurate and rich data regularities. Also, the dimension of 
the word embedding for LM and NMT should match each other 
(620 in our experiments).

In addition, we slightly change the baseline network 
architecture to maximize the effect of word embedding transfer. 
In the baseline architecture for NMT, there are actually three 
word embedding matrices: one for source and two for target 
words. Right before the softmax, the feed-forward layer is a 
kind of transpose of the word embedding matrix for target 
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words. Thus, instead of the feed-forward neural network layer, 
we can use the word embedding matrix for target words. That 

is,    in Eq. (10) and    in Eq. (11) can share the same 

parameter in NMT, where    are the transpose of   . By 
this weight sharing, the model size is decreased significantly (to 
71% in NMT). We call this model Baseline+ProjY in our 
experiments, and Baseline+PorjY+LMword is our final model 
with word embedding transferred from LM.

Likewise, for LM, we use one word embedding matrix for 
the input and the output layers. After obtaining the word 
embedding of the input words, two LSTM layers follow, then 
the transposed word embedding matrix is applied to get the 
output right before the softmax. The output dimension of the 
last LSTM layer should be the same as the one of the word 
embedding vectors. That is, as in NMT,   in Eq. (3) and   in 
Eq. (5) share the same parameter. 

Ⅳ. Experiment

4-1 Tasks and Corpora

We evaluated the proposed word embedding transfer on two 
translation tasks; (1) En-De and (2) En-Fi. As a baseline task, 
for each language pair, we used all the parallel corpora 
available from WMT’16 for training, which results in 4.5M and 
2M sentence pairs for En-De and En-Fi, respectively. In the 
case of En-De, we preprocessed the parallel corpora following 
[22] and ended up with 100M words on the English side. For 
En-Fi, we did not use any preprocessing routine other than 
simple tokenization. Instead of space- separated tokens, we use 
30k subwords extracted through byte pair encoding (BPE), as 
suggested in [11]. When computing the translation quality 
using BLEU, we un-BPE’d the resulting translations, but left 
them tokenized. 

For word embedding transfer, we trained three LMs for three 
languages: En, De, and Fi. Note that we have one LM for En, 
although we transfer the same word embedding matrix to the 
two NMT models for En-De and En-Fi, respectively. We used 
monolingual data from the WMT’16 page as in Table 1. Since 
the monolingual data is not abundant for En-Fi, we used both 
monolingual data and parallel data for the corresponding LMs. 
Note that the corpus of Fi for LM is twice as large as the 
parallel corpus. For En-De, the parallel corpus was not included 
for LM training, since the monolingual data of De was large 
enough, compared to Fi.

표 1. 언어모델을 학습하기위한 학습 데이터

Table 1. Training datasets to train three LMs

 En De Fi

Parallel En-Fi data - En-Fi data

Mono
Europal v7/v8

News Crawl(2015)

Europal v7/v8

News Crawl(2015)

Europal v7/v8

News Crawl(2014)

News Crawl(2015)

표 2. En-De 와 En-Fi 에 대한 BLEU 점수. Validation 
데이터에 대한 결과는 괄호안에 있음. NMT 의 기본 모델 

[4] 에 BPE 사용함.   
Table 2. BLEU scores on the test sets for En-De and 

En-Fi with two different beam widths. The scores on 
the development sets are in the parentheses. The 
baseline in the NMT model in [4] with LSTM and 
BPE

 En-De En-Fi

Beam Width 1 12 1 12

 Baseline 19.15(18.82)21.41(20.60)7.38(8.02) 8.91(9.20)

 +ProjY 19.21(18.78)21.35(20.49)7.73(8.39) 8.81(9.33)

 +ProjY+LMword 18.96(18.78)21.60(20.26)8.12(8.41) 9.48(9.71)

4-2 Decoding and Evaluation

Once a model is trained, we use a simple forward beam 
search with the width set to 12 to find a translation that 
approximately maximizes log     The decoded 
translation is then un-BPE’d and evaluated against a reference 
sentence by BLEU (in practice, BLEU is computed over a set of 
sentences). We use ‘newstest2013’ and ‘newstest2015’ as the 
validation and test sets for En-De, and ‘newsdev2015’ and 
‘newstest2015’ for En-Fi. 

4-3 Results

We present the translation qualities of all the models on both 
En-De and En-Fi in Table 2. For En-De, the differences are 
marginal. However, for En-Fi, whose corpus is much smaller 
than En-De, the table shows significant improvement in the 
translation qualities. 

Also, the model size to train is 38% compared to the baseline 
model, which means training per each iteration is faster and 
converges faster than the baseline model. Note that the data set 
for NMT of De is completely different from the LM data. Yet, 
the proposed method has almost the same performance with a 
much smaller model size.

Ⅴ. Conclusion
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In this paper, we proposed to transfer word embedding from 
previously trained language models to neural machine 
translation. The experiment results show that our proposed 
method works efficiently and even improves the qualities of 
translations with a much smaller model size. This implies that 
NMT models can be trained more easily even when the corpus 
size is limited. 

For future studies, we can train LMs with much larger corpus 
(like Wikipedia) and transfer the word embeddings to NMT, 
and even fine-tune the word embedding in NMT models. Also, 
it will be interesting to compare the contributions of source and 
target word embedding separately. 
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