
Copyright ⓒ 2019 The Digital Contents Society http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X2211

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 20, No. 11, pp. 2211-2216, Nov. 2019

언어 모델의 워드 임베딩을 이용한 신경망 기계 번역

정 찬 웅 · 최 희 열*

한동대학교 정보통신공학과

Neural Machine Translation with Word Embedding Transferred
from Language Model
Chanung Jeong · Heeyoul Choi*

Department of Information and Communication Engineering, Handong University, Pohang, Korea

[요 약]

신경망 번역이 기계 번역의 새로운 패러다임이 된 이후, 번역은 많은 양의 병렬 말뭉치에 의존하게 되었다. 번역과 달리 언어 모델

은 하나의 언어로 된 말뭉치를 사용하는데, 데이터는 풍부하다. 언어모델의 말뭉치를 신경망 기계 번역에 이용하기 위한 몇가지 방

법들이 제안되었다. 이 논문에서는 학습된 언어 모델을 신경망 기계 번역에 이용하는 새로운 방법을 제시한다. 번역의 입력언어와

출력언어에 해당되는 두 개의 언어 모델을 훈련시킨 뒤, 언어 모델들의 워드 임베딩 행렬들을 신경망 기계 번역으로 이전하는 방법

이다. 제안된 방법을 검증하기위해 영어-독일어 그리고 영어-핀란드어의 데이터로 실험했고, 기존모델에 비해 40% 정도의 크기만

가지는 모델로도 성능이 같거나 조금 더 좋아지는 결과(+0.57 BLEU 점수)를 확인했다.

[Abstract]

Since neural machine translation (NMT) has become a new paradigm in machine translation, it relies on large amounts of parallel
corpora to train neural networks, while language models (LMs) are trained on abundant monolingual corpus. Thus, there have been a few
approaches to use monolingual corpus in training NMT systems. In this paper, we propose to use pretrained LM for NMT. After training
two LMs for source and target languages of NMT, we transfer the word embedding matrices from the LMs to the target NMT model. In
the experiments with the task of En-De and En-Fi translation, the proposed method keeps the translation quality the same or slightly better
(up to +0.57 BLEU) using only around 40% of the previous model size.

색인어 : 지식 이전, 언어 모델, 기계번역, 인공신경망, 워드 임베딩

Key word : Knowledge Transfer, Language Model, Neural Machine Translation, Neural Network, Word Embedding

http://dx.doi.org/10.9728/dcs.2019.20.11.2211

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 20 September 2019; Revised 22 October 2019
Accepted 05 November 2019

*Corresponding Author; Heeyoul Choi

Tel: +82-54-260-1303
E-mail: hchoi@handong.edu

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2019.20.11.2211&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5

디지털콘텐츠학회논문지(J. DCS) Vol. 20, No. 11, pp. 2211-2216, Nov. 2019

http://dx.doi.org/10.9728/dcs.2019.20.11.2211 2212

Ⅰ. Introduction

As a deep learning application [1], neural machine
translation (NMT), which is an end-to-end approach to machine
translation [2, 3, 4] has widely become adopted in machine
translation research, as evidenced by its success in a recent
WMT’16 translation task [5, 6, 7].

To train the end-to-end neural network model, NMT relies
on large amounts of parallel corpus, and some language pairs
suffer a lack of such corpus. Since monolingual corpus is
abundant for any language, there have been several works to
use monolingual corpus to help train NMT models in addition
to parallel (bilingual) corpus [8, 9]. Contrary to NMT models,
language models (LMs) are trained on monolingual corpus, by
maximizing the likelihood of the next word, given the previous
words in the sentence. Thus, the previous approaches to use
monolingual data in NMT are based on combining LM and
NMT. In those works, they focused on the structure of the
translated sentences from NMT expecting that such structure
can be captured by LM. Note that in those previous work, only
one LM on the target language is combined to the NMT
decoder.

In this paper, we focus on the word embedding rather than
the sentence structure. The meaning of a word in the vocabulary
can be learned by training in natural language processing tasks
(e.g. language modeling or neural machine translation) and
represented by a word embedding vector. In other words,
training brings similar words close to each other in the word
embedding space and dissimilar words far away from each
other.

The rationale of our work is twofold. First, we notice that
around 60% of NMT model parameters are used for word
embedding. If we can avoid training the word embedding in
NMT, our model size can be significantly decreased, which
might imply that the NMT model needs a less amount of
parallel data. Also, we can detour the rare words problem [10,
11, 12, 7]. Second, we assume that word embedding in LM and
NMT can be shared, because their representations show
semantic meanings of words [3] and that the semantic meanings
represented by word embedding vectors are not significantly
different between LM and NMT. That is, instead of training the
word embedding vectors in NMT, we want to just transfer the
ones from LM to NMT.

After training two LMs for both source and target languages
in NMT, we transfer the word embedding matrices from LMs
tot he NMT model. In the experiments with the task of En-De
and En-Fi translation, the proposed method keeps the

translation quality the same or even slightly better (up to +0.57
BLEU for En-Fi) using only around 40% of the previous model
size for NMT.

Ⅱ. Background: LM and NMT

 In this section, we give a brief overview of LMs and NMT
models focusing on word embedding. See [13] and [5] for
details.

2-1 Language Model

LMs reflect the syntactic and semantic regularities of a given
language for recognition or generation. Generally, LMs
calculate a probability of a word sequence to measure how
likely the sequence(or a sentence) is. Given a sentence
 … , the probability is calculated by factorized

conditional probabilities as follows:

 ⋯

 (1)

where is the -th word, and
 stands for a word

sequence …

A neural network with one-hot vectors as its input can learn
the word embedding vectors [14]. In neural network based
language modeling (NNLM), the conditional probabilities are
implemented by forward propagation in neural networks, and
the first NNLM was based on feed forward neural network [15],
which generalizes to unseen or rare -grams. To overcome the
limitation of the Markov assumption in feed forward neural
network LMs, RNNLM has been proposed [13].   The ordinary
RNN computes the output sequence of hidden node from an
input sequence, which is obtained by

 (2)

where can be implemented as long short-term memory
(LSTM [16]), gated recurrent units (GRU[17]) or any other
RNN units [18], and is the word embedding of .

 (3)

where is a one-hot vector defined as

Neural Machine Translation with Word Embedding Transferred from Language Model

http://www.dcs.or.kr2213

 if
(4)

∈ℝ × is a word embedding matrix, where and
 are the word embedding dimension and the vocabulary
size, respectively.
 Finally, the output of the neural networks is a probability
distribution for the next word

 ∝exp (5)

where is the -th row vector of the matrix, ∈ℝ ×
and is bias.

The LM model is usually trained to maximize the
log-probability of the correct prediction of the next word, given
the previous words in the sequence using a large training
parallel corpus. This is done by stochastic gradient de- scent. It
has been observed that these unsupervised word embedding
vectors can be used to greatly improve supervised natural
language tasks [19, 20]

2-2 Neural Machine Translation

The attention-based NMT system computes a conditional
distribution over translations given a source sentence

…

 ∝exp (6)

This is done by a neural network that consists of an encoder
and a decoder. The encoder is often implemented as a
bidirectional recurrent neural net- work that reads the source
sentence word-by-word. Before being read by the encoder, each

source word
∈ is projected onto a continuous vector

space:

 (7)

where ∈ℝ × is a source word embedding matrix.
The resulting sequence of the word embedding vectors is then
read by the bidirectional encoder recurrent network which
consists of forward and reverse recurrent networks.

The decoder consists of two sub-components–a recurrent
network and the attention mechanism [21]. The recurrent
network in the decoder is unidirectional, which computes the
conditional distribution over the next target word, given all the

previous target words and the source sentence:

 ′ (8)

 The decoder recurrent network maintains an internal hidden
state . At each time step ′ , it first uses the attention

mechanism to make a context vector, ′ , from the annotation

vectors that are the output of the encoder. The decoder recurrent
network updates its own hidden state by

 ′ ′ ′ ′ (9)

Like the encoder, can be implemented as either an LSTM

or GRU. ′ is a target-side word embedding vector

computed by

 ′ ′ (10)

similarly to Eq. (7). The probability of each word in the target
vocabulary ′ is computed by

 ′ ′ ∝exp ′ (11)

As in LM, the NMT model is usually trained to maximize

the log-probability of the correct translation, given a source
sentence, which is done by stochastic gradient descent.

Ⅲ. Word Embedding Transfer

The main contribution of this paper is to transfer word
embedding from LM to NMT. In the two LMs for source and
target languages in NMT, we obtain two word embeddings.
 To transfer the word embedding from LM to NMT, we have to
match two factors: vocabularies and embedding dimensions.
We build up a dictionary for each language based on the
monolingual corpus, expecting the monolingual data to include
more accurate and rich data regularities. Also, the dimension of
the word embedding for LM and NMT should match each other
(620 in our experiments).

In addition, we slightly change the baseline network
architecture to maximize the effect of word embedding transfer.
In the baseline architecture for NMT, there are actually three
word embedding matrices: one for source and two for target
words. Right before the softmax, the feed-forward layer is a
kind of transpose of the word embedding matrix for target

디지털콘텐츠학회논문지(J. DCS) Vol. 20, No. 11, pp. 2211-2216, Nov. 2019

http://dx.doi.org/10.9728/dcs.2019.20.11.2211 2214

words. Thus, instead of the feed-forward neural network layer,
we can use the word embedding matrix for target words. That

is, in Eq. (10) and in Eq. (11) can share the same

parameter in NMT, where are the transpose of . By
this weight sharing, the model size is decreased significantly (to
71% in NMT). We call this model Baseline+ProjY in our
experiments, and Baseline+PorjY+LMword is our final model
with word embedding transferred from LM.

Likewise, for LM, we use one word embedding matrix for
the input and the output layers. After obtaining the word
embedding of the input words, two LSTM layers follow, then
the transposed word embedding matrix is applied to get the
output right before the softmax. The output dimension of the
last LSTM layer should be the same as the one of the word
embedding vectors. That is, as in NMT, in Eq. (3) and in
Eq. (5) share the same parameter.

Ⅳ. Experiment

4-1 Tasks and Corpora

We evaluated the proposed word embedding transfer on two
translation tasks; (1) En-De and (2) En-Fi. As a baseline task,
for each language pair, we used all the parallel corpora
available from WMT’16 for training, which results in 4.5M and
2M sentence pairs for En-De and En-Fi, respectively. In the
case of En-De, we preprocessed the parallel corpora following
[22] and ended up with 100M words on the English side. For
En-Fi, we did not use any preprocessing routine other than
simple tokenization. Instead of space- separated tokens, we use
30k subwords extracted through byte pair encoding (BPE), as
suggested in [11]. When computing the translation quality
using BLEU, we un-BPE’d the resulting translations, but left
them tokenized.

For word embedding transfer, we trained three LMs for three
languages: En, De, and Fi. Note that we have one LM for En,
although we transfer the same word embedding matrix to the
two NMT models for En-De and En-Fi, respectively. We used
monolingual data from the WMT’16 page as in Table 1. Since
the monolingual data is not abundant for En-Fi, we used both
monolingual data and parallel data for the corresponding LMs.
Note that the corpus of Fi for LM is twice as large as the
parallel corpus. For En-De, the parallel corpus was not included
for LM training, since the monolingual data of De was large
enough, compared to Fi.

표 1. 언어모델을 학습하기위한 학습 데이터

Table 1. Training datasets to train three LMs

 En De Fi

Parallel En-Fi data - En-Fi data

Mono
Europal v7/v8

News Crawl(2015)

Europal v7/v8

News Crawl(2015)

Europal v7/v8

News Crawl(2014)

News Crawl(2015)

표 2. En-De 와 En-Fi 에 대한 BLEU 점수. Validation
데이터에 대한 결과는 괄호안에 있음. NMT 의 기본 모델

[4] 에 BPE 사용함.
Table 2. BLEU scores on the test sets for En-De and

En-Fi with two different beam widths. The scores on
the development sets are in the parentheses. The
baseline in the NMT model in [4] with LSTM and
BPE

 En-De En-Fi

Beam Width 1 12 1 12

 Baseline 19.15(18.82)21.41(20.60)7.38(8.02) 8.91(9.20)

 +ProjY 19.21(18.78)21.35(20.49)7.73(8.39) 8.81(9.33)

 +ProjY+LMword 18.96(18.78)21.60(20.26)8.12(8.41) 9.48(9.71)

4-2 Decoding and Evaluation

Once a model is trained, we use a simple forward beam
search with the width set to 12 to find a translation that
approximately maximizes log The decoded
translation is then un-BPE’d and evaluated against a reference
sentence by BLEU (in practice, BLEU is computed over a set of
sentences). We use ‘newstest2013’ and ‘newstest2015’ as the
validation and test sets for En-De, and ‘newsdev2015’ and
‘newstest2015’ for En-Fi.

4-3 Results

We present the translation qualities of all the models on both
En-De and En-Fi in Table 2. For En-De, the differences are
marginal. However, for En-Fi, whose corpus is much smaller
than En-De, the table shows significant improvement in the
translation qualities.

Also, the model size to train is 38% compared to the baseline
model, which means training per each iteration is faster and
converges faster than the baseline model. Note that the data set
for NMT of De is completely different from the LM data. Yet,
the proposed method has almost the same performance with a
much smaller model size.

Ⅴ. Conclusion

Neural Machine Translation with Word Embedding Transferred from Language Model

2215

In this paper, we proposed to transfer word embedding from
previously trained language models to neural machine
translation. The experiment results show that our proposed
method works efficiently and even improves the qualities of
translations with a much smaller model size. This implies that
NMT models can be trained more easily even when the corpus
size is limited.

For future studies, we can train LMs with much larger corpus
(like Wikipedia) and transfer the word embeddings to NMT,
and even fine-tune the word embedding in NMT models. Also,
it will be interesting to compare the contributions of source and
target word embedding separately.

Acknowledgements

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education
(2017R1D1A1B03033341), and by Institute for Information &
Communications Technology Promotion (IITP) grant funded by
the Korea government (MSIT) (No. 2018-0-00749, Development
of virtual network management technology based on artificial
intelligence).

References

[1] H. Choi, Y. Min, “Intelligent Information System;
Introduction to deep learning and major issues”, Korea
Information Processing Society Review, vol. 22, no. 1,
pp. 7-21, 2015.

[2] N. Kalchbrenner, P. Blunsom, “Recurrent continuous
translation models”., EMNLP, Seattle, Washington. pp.
413, 2013.

[3] I. Sutskever, O. Vinyals, Q. V. Le, “Sequence to
Sequence Learning with Neural Networks”, in:
Advances in Neural Information Processing Systems
(NIPS), Montreal, Canada. 2014.

[4] D. Bahdanau, K. Cho, Y. Bengio, “Neural Machine
Translation by Jointly Learning to Align and
Translate”, in: Proc. Int’l Conf. on Learning
Representations (ICLR), Sandiego, CA. 2015.

[5] R. Sennrich, B. Haddow, A. Birch, Edinburgh “neural
machine translation systems for wmt 16”, in: The First
Conference on Statistical Machine Translation (WMT),
Berlin, Germany. 2016.

[6] J. Chung, K. Cho, Y. Bengio, “The NYU-MILA
neural machine translation systems for wmt’16”, in:
The First Conference on Statistical Machine Translation

(WMT), Berlin, Germany. 2016.
[7] C. Kang, Y. Ro, J. Kim, and H. Choi, “Symbolizing

Numbers to Improve Neural Machine Translation,”
Journal of Digital Contents Society, vol. 19, no. 6, pp.
1161-1167, 2018.

[8] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault,
H.-C. Lin, F. Bougares, H. Schwenk, Y. Bengio, “On
using monolingual corpora in neural machine
translation”, arXiv preprint arXiv:1503.03535.  

[9] R. Sennrich, B. Haddow, A. Birch, “Improving neural
machine translation models with monolingual data”,
arXiv preprint arXiv:1511.06709.  

[10] M.-T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, W.
Zaremba, “Addressing the Rare Word Problem in
Neural Machine Translation”, arXiv preprint
arXiv:1410.8206

[11] R. Sennrich, B. Haddow, A. Birch, “Neural machine
translation of rare words with subword units”, arXiv
preprint arXiv:1508.07909

[12] H. Choi, K. Cho, Y. Bengio, “Context-dependent
word representation for neural machine translation”,
Computer Speech and Language, vol. 45, pp. 149–160,
2017.

[13] T. Mikolov, G. Corrado, K. Chen, J. Dean, “Efficient
Estimation of Word Representations in Vector Space”,
in: Proc. Int’l Conf. on Learning Representations
(ICLR), Scottsdale, Arizona. 2013.

[14] R. Miikkulainen, M. G. Dyer, “Natural language
processing with modular neural networks and
distributed lexicon”, Cognitive Science, vol. 15, pp.
343–399, 1991.

[15] Y. Bengio, R. Ducharme, P. Vincent, “A Neural
Probabilistic Language Model”, The Journal of
Machine Learning Research, vol. 3, pp. 1137–1155,
2003  

[16] S. Hochreiter, J. Schmidhuber, “Long short-term
memory”, Neural computation vol. 9, no. 8, pp. 1735
–80. doi:10.1162/neco.1997.9.8.1735, 1997.

[17] K. Cho, B. van Merrienboer, D. Bahdanau, Y.
Bengio, “On the properties of neural machine
translation: Encoder decoder approaches”, arXiv preprint
arXiv:1409.1259.

[18] H. Choi, “Persistent hidden states and nonlinear
transformation for long short-term memory”,
Neurocomputing, vol. 331, pp. 458-464, 2019.

[19] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu, P. Kuksa, “Natural language processing
(almost) from scratch”, The Journal of Machine

디지털콘텐츠학회논문지(J. DCS) Vol. 20, No. 11, pp. 2211-2216, Nov. 2019

http://dx.doi.org/10.9728/dcs.2019.20.11.2211 2216

Learning Research, vol. 12, pp. 2493–2537, 2011.
[20] J. Turian, L. Ratinov, Y. Bengio, “Word

representations: a simple and general method for
semi-supervised learning”, in: Proceedings of the 48th
annual meeting of the Association for Computational
Linguistics, pp. 384–394, 2010.

[21] H. Choi, K. Cho, Y. Bengio, “Fine-grained attention
mechanism for neural machine translation”,
Neurocomputing, vol. 284, pp.171-176, 2018.

[22] S. Jean, K. Cho, R. Memisevic, Y. Bengio, “On
Using Very Large Target Vocabulary for Neural
Machine Translation”, in: 53rd Annual Meeting of the
Association for Computational Linguistics, Beijing,
China. 2015.

정찬웅(Chanung Jeong)

2016년 : 한동대학교 컴퓨터공학부

2016년～2018년: Refresh Foods Inc(San Jose, CA. USA)

2018년～현 재: 한동대학교 일반대학원 정보통신공학과 Machine Intelligence Lab 석사 과정

※관심분야： 딥러닝(Deep Learning), NLP(Natural Language Processing), Chat-bot 등

최희열(Heeyoul Choi)

2005년: 포항공과대학교, 컴퓨터공학과 (이학석사)

2010년: Dept. of Computer Science and Engineering, Texas A&M University (Ph.D)

2010년 ~ 2011년: Indiana University (PostDoc)

2015년 ~ 2016년: University of Montreal (Visiting Researcher)

1998년 ～ 2001년: OromInfo (Programmer)

2011년～2016년: 삼성전자 종합기술원 (Research Staff Member)

2016년～현 재 : 한동대학교 전산전자공학부 조교수

※ 관심분야： 머신러닝, 딥러닝, 인공지능

	Neural Machine Translation with Word Embedding Transferred from Language Model
	[요약]
	[Abstract]
	Ⅰ. Introduction
	Ⅱ. Background: LM and NMT
	Ⅲ. Word Embedding Transfer
	Ⅳ. Experiment
	Ⅴ. Conclusion
	References

