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[요    약]

블룸 필터는 적은 공간으로 항목을 기억하는 특성을 가지므로 머신러닝 분야에서 임베딩에 사용된다. 온라인 러닝에서는 새 항

목이 등장할 때 디케이를 적용함으로써 블룸 필터가 가득 차지 않도록 하는 특별한 블룸 필터가 필요하다. 개인화 추천 관련 데이

터를 사용하여 정확성과 항목간 유사성 유지의 관점에서 디케이 적용이 가능한 블룸 필터들을 비교하였다. 또한 두 가지 장점을 

가지는 새로운 ‘확률 블룸 필터’를 제안하였다. 첫 번째 장점은 유사성 기준과의 트레이드-오프는 있으나 정확성에 있어서 다른 필

터에 비해 우수하며 종합적 성능에서는 안정 블룸 필터 다음으로 우수하다는 점이다. 두 번째는 장기적으로 파라미터의 계속적 조

정 없이도 필터가 가득 차거나 또는 비는 일이 일어나지 않는다는 점이다.

[Abstract] 

Bloom filters are used as embeddings in machine learning domain because of its characteristic of remembering items with less 
storage. As to online learning, a specific kind of bloom filter is needed, which can prevent filters being full as new items appear 
by decay. We compared bloom filters which can decay in perspective of precision and the degree of preservation of similarities 
between items using dataset for personalized recommendation. We also suggested a new bloom filter named as 'probabilistic 
bloom filter', which has two advantages. First, it showed higher precision than other filters at the expense of similarities between 
items while overall performance was the second to 'stable bloom filter' when it comes to precision-similarity trade-off. Second, 
even in a long term, it ensures that filters are not full or empty without continuous parameter calibration.
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Ⅰ. Introduction

In machine learning domain, the importance of online learning 
is growing. Although cloud environment to deal with big data is 
rising, there is a limit to data digestion capacity and it is still 
painful to use large batch data for training at once. Online 
learning can reduce the pain by using a handful of data each time. 
While online learning has the property to make big data 
manageable, it is also important to quickly reflect the concept 
drift.

The importance of embedding is also growing. In domains 
with a large users and items, how to reduce dimensions is an 
important issue in modeling. Bloom filters are emerging as 
storage saving[1] and embeddings in machine learning domain, 
especially in recommender systems[2][3][4].

In online learning environment, since new data keeps coming 
in, there is a need to reset the existing cells of a bloom filter in 
order to prevent bloom filters becoming full, and there are some 
algorithms related to it. However, there is no comparison as to 
what characteristics each algorithm shows in the online learning 
environment.

In this paper, we propose a new decay bloom filter which has a 
different characteristic and compare algorithms in online learning 
situation of a recommender system.

Ⅱ. Related Work

Stable bloom filter[5] sets cell values as a predefined max cell 
value when inserting an item. When decaying, it decreases 1 on 
randomly selected cells. It provides an algorithm to decide the 
number of cells to be randomly chosen where a target false 
positive rate, a dimension of bloom filter, and a max cell value 
are given. This makes it easier to apply stable bloom filter in 
practice. In addition, unlike double buffering bloom filter which 
uses two filters, a warm-up filter and an active filter, stable bloom 
Filter uses a single filter, so it costs a half amount of storage 
compared to double buffering bloom filter.

Temporal counting bloom filter[6] is similar to stable bloom 
filter. It sets cells as 'initial counter value' which is the same as 
max cell value of stable bloom filter. The difference is that 
temporal counting bloom filter decreases a cell value as much as 
'decay factor', which is calculated by a provided algorithm, rather 
than constant 1. Temporal counting bloom filter also uses the 
same amount as stable bloom filter.

Double buffering bloom filter[7] uses two filters, a warm-up 
filter and an active filter. When inserting an item, if the item is in 

the active filter, it checks if it also exists in the warm-up filter, 
then set corresponding cells of warm-up filter only when the 
active filter is filled more than half of its capacity. If the item is 
not in the active filter, it inserts the item into the active filter, then 
also insert it to the warm-up filter only when the active filter is 
filled more than half. Decaying of the bloom filter, 'renewing' can 
be more appropriate in this case, is performed by exchanging the 
warm-up filters and the active filters when the active filters are 
full.

There are works in which bloom filters are used as embeddings 
which represent items or users of recommender systems[2][3][4]. 
Usually, the dimension of user or item vectors are enormous, 
dimensionality reduction is inevitable, and bloom filters can be a 
way of reducing dimensions. For example, a user embedding can 
be made by setting cells of a bloom filter of which indexes are 
generated by applying hashing with the value of an item. An item 
embedding can be generated in the same way.

Ⅲ. Probabilistic Bloom Filter

We suggest probabilistic bloom filter which resets a cell in 
proportion to the inverse of the count of the cell, which results in 
longer existence of important cells. We regard a cell as being 
'important' when its count is high because it is used to check 
existence of many items.

Inserting is performed by adding 1 to all corresponding cells, 
and it updates the total sum of each count of cells and the number 
of non-zero cells of the filter. To make the filter decay, it first 
calculates the number of cells to reset to zero by subtracting a 
predefined configured number of non-zero cells from the current 
number of non-zero cells. Then it chooses non-zero cells to reset 
with probabilities in proportion to the inverse of the count of the 
cells. Inserting and decaying procedures are shown in Figure1 and 
Figure 2, respectively.

index_list = hash(item)
for index in index_list:
    cell_value_sum += 1
    if bloom_filter[index] == 0:
        bloom_filter[index] = 1
        non_zero_cell_count += 1
    else:
        bloom_filter[index] += 1

그림 1. 블룸 필터에 항목을 삽입하는 알고리즘

Fig 1. Algorithm for inserting an item into the bloom filter
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if non_zero_cell_count > threshold:
    number_of_cells_to_reset = non_zero_cell_count - 

threshold
    randomly choose cells with a probability in proportion to 1 

/ bloom_filter[index]
    reset chosen cells to zero
    decrease cell_value_sum and non_zero_cell_count by 

calculated amounts

그림 2. 블룸 필터에 디케이를 적용하는 알고리즘

Fig 2. Algorithm for Decaying of the bloom filter

Since it always maintains a specific number of zero cells, it 
never becomes full and users don't have to worry about how to 
find out the correct parameter for decay. This problem about 
deciding parameters related to decay is not trivial in online 
learning. For stable bloom filter and temporal counting bloom 
filter, algorithms are provided to decide the number of cells to 
decay or the decay factor, but the resulting values are not usually 
integers. So users can't help using rounded values which can 
result in not guaranteeing properties like false positive rate when 
they are used over a long period in online learning situations.

Ⅳ. Comparison between decay bloom 

filters 

We wanted to see how each bloom filter performs as an 
embedding in a context of online learning of a recommender 
system. So we made a bloom filter represent a user by inserting 
items which the user interacted with into the bloom filter. As a 
result, bloom filters were created as many as the number of users.

Movielens[8] dataset was used for the experiment because it 
has been used many times as a benchmark dataset for online 
learning[9][10][11] and personalized recommendation[12]. u1.test 
~ u4.test of ml-100k dataset were used to calculate 4-fold cross 
validation results on various parameters. Only 4 and 5 ratings 
were treated as positive feedbacks and corresponding items were 
inserted into a user's bloom filter. Records of the dataset were 
sorted by their timestamps and the insertions were made by time 
since we meant to simulate an online learning situation.

Evaluation as to how well a bloom filter performs as an 
embedding was done in two aspects. The first is about precision 
of a bloom filter. It describes how accurately a filter judge if an 
item is stored in the filter. We measured the mean of precision of 
users' bloom filters by checking if all items appeared in users' 
records. The second is about the degree of preservation of 
similarity between embeddings. Good user embeddings should 

preserve close users closely after the dimensionality reduction is 
done. We measured the degree of preservation of cosine 
similarity using rank correlation(Kendall's tau) between two 
similarity rank sets - one was generated by bloom filter 
embeddings and the other was generated by user vectors without 
dimensionality reduction of which dimension is the number of 
items. Cosine similarity ranks were generated between a user and 
all the other users, and this procedure was repeated on all users.

The experimental parameters for each bloom filter are shown 
in Table 1. The dimension of filters and the number of hashing 
are commonly applied to all bloom filters. For stable bloom filter, 
the number of cells to decay is decided by other parameters like 
cell max and false positive rate using the provided algorithm[5]. 
Likewise, the decay factor of temporal counting bloom filter is 
calculated with other parameters by the algorithm[6]. As to 
double buffering bloom filter, various thresholds are examined for 
double buffering bloom filter rather than only 'half' for inserting 
an item into a warm-up filter and 'full' for exchanging a warm-up 
filter and an active filter because a full bloom filter is not so much 
useful as an embedding and there is a possibility that other 
thresholds for inserting are better than the threshold of 'half' when 
domain differs. Probabilistic bloom filter has the smallest number 
of parameters among all, and actually non-zero cell ratio, which 
means how much the filter can be filled maximally (0.2 means 
that more than 20% cells cannot be set), is the only one needed.

표 1. 실험에서 사용된 블룸 필터의 파라미터 

Table 1. Parameters of Bloom Filters in Experiments

Some experimental results are shown in Figure 3~6. Cyan is 
stable bloom filter, blue is temporal counting bloom filter, green 
is double buffering bloom filter, and red is probabilistic bloom 
filter. Results of every dimension can be found in Appendix. 
Since there is a tradeoff between precision and rank correlation, 
there are no such 'best' parameters per bloom filters. So the results 
need to be interpreted by judging how far each graph of bloom 

Filter Dimension Number of Hashing
Common for all 

bloom filters 10, 20, ..., 150 2, 3

Cell Max False Positive Rate

Stable Bloom Filter 3, 5, 10 0.1, 0.2, ..., 0.9

Initial Counter Value False Positive Rate
Temporal Counting 

Bloom Filter 3, 5, 10 0.1, 0.2, ..., 0.9

Warm-Up Threshold Swap Threshold
Double Buffering 

Bloom Filter 0.3, 0.4, 0.5 0.7, 0.8, 0.9, 1.0

Non-zero Cell Ratio
Probabilistic 
Bloom Filter 0.2, 0.3, ..., 0.9
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filters appears from its origin as a whole. When the dimension of 
bloom filters was 20, stable bloom filter showed the best results, 
followed by probabilistic bloom filter and double buffering bloom 
filter, and temporal counting bloom filter came at last. When the 
dimension was increased to 40, 60, and 80, stable bloom filter 
was the best and the second was the probability bloom filter. 
Beside the results of overall performance, a unique trait of 
probabilistic bloom filter was found by this experiment. It shows 
far better precision than other filters when the dimension 
increases. For example, in Figure 5, the best precision achieved 
by probabilistic bloom filter is about 0.17 and no other filters 
reach near the value. This can be a useful property when precision 
is especially more important than rank correlation. We suppose 
that this result is due to the trait of probabilistic bloom filter that 
rarely resets important cells which are set by many items.

그림 3. 블룸 필터의 차원이 20인 경우

(청녹- 안정 블룸 필터, 파랑- 시간 카운팅 블룸 필터, 녹색- 더블 

버퍼링 블룸 필터, 빨강- 확률 블룸 필터)
Fig 3. Comparison of correlation and precision with 
dimension of bloom filters = 20
(Cyan- stable bloom filter, Blue- temporal counting bloom 
filter, Green- double buffering bloom filter, Red- probabilistic 
bloom filter)

그림 4. 블룸 필터의 차원이 40인 경우

Fig 4. Comparison of correlation and precision with 
dimension of bloom filters = 40

그림 5. 블룸 필터의 차원이 60인 경우

Fig 5. Comparison of correlation and precision with 
dimension of bloom filters = 60

그림 6. 블룸 필터의 차원이 80인 경우

Fig 6. Comparison of correlation and precision with 
dimension of bloom filters = 80 
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Ⅴ. Conclusion

We compared various bloom filters which can decay as 
embeddings in online learning context of recommender systems. 
Besides existing bloom filters, we suggested 'probabilistic bloom 
filter' which can remember important cells longer. It never makes 
bloom filters full or emptier than necessary in an online learning 
situation while other bloom filters can suffer such problems 
because the calculated number of cells to decay or a decay factor 
must be rounded to become an integer. The overall performance 
over precision - rank correlation tradeoff was measured using 
Movielens dataset. Stable bloom filter showed the best results 
overall in this setting and probabilistic bloom filter was the 
second. When it comes to precision, probabilistic bloom filter 
showed that it can achieve higher precision than all the other 
bloom filters at the expense of rank correlation, so we expect it to 
be used in an online learning situation where precision is more 
important than rank correlation.

Appendix

The figures below show the experimental results comparing 
the correlation and precision of bloom filters according to the 
dimension size of filters.
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