
Copyright ⓒ 2019 The Digital Contents Society 1401 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

개인화 추천 시스템의 온라인 러닝을 위한 확률 블룸 필터

유 찬 우1 · 강 환 수2 · 김 희 천3*
1라인플러스
2동양미래대학교 컴퓨터정보공학과
3한국방송통신대학교 컴퓨터과학과

Probabilistic Bloom Filter for Online Learning in Personalized
Recommender Systems
Chan-Woo Yoo1 · Hwan-Soo Kang2 · Hee-Chern Kim3*
1Line Plus Corporation
2Department of Computer Information Engineering, Dongyang Mirae University, Seoul, Korea
3Department of Computer Science, Korea National Open University, Seoul, Korea

[요 약]

블룸 필터는 적은 공간으로 항목을 기억하는 특성을 가지므로 머신러닝 분야에서 임베딩에 사용된다. 온라인 러닝에서는 새 항

목이 등장할 때 디케이를 적용함으로써 블룸 필터가 가득 차지 않도록 하는 특별한 블룸 필터가 필요하다. 개인화 추천 관련 데이

터를 사용하여 정확성과 항목간 유사성 유지의 관점에서 디케이 적용이 가능한 블룸 필터들을 비교하였다. 또한 두 가지 장점을

가지는 새로운 ‘확률 블룸 필터’를 제안하였다. 첫 번째 장점은 유사성 기준과의 트레이드-오프는 있으나 정확성에 있어서 다른 필

터에 비해 우수하며 종합적 성능에서는 안정 블룸 필터 다음으로 우수하다는 점이다. 두 번째는 장기적으로 파라미터의 계속적 조

정 없이도 필터가 가득 차거나 또는 비는 일이 일어나지 않는다는 점이다.

[Abstract]

Bloom filters are used as embeddings in machine learning domain because of its characteristic of remembering items with less
storage. As to online learning, a specific kind of bloom filter is needed, which can prevent filters being full as new items appear
by decay. We compared bloom filters which can decay in perspective of precision and the degree of preservation of similarities
between items using dataset for personalized recommendation. We also suggested a new bloom filter named as 'probabilistic
bloom filter', which has two advantages. First, it showed higher precision than other filters at the expense of similarities between
items while overall performance was the second to 'stable bloom filter' when it comes to precision-similarity trade-off. Second,
even in a long term, it ensures that filters are not full or empty without continuous parameter calibration.
색인어 : 블룸 필터, 디케이, 임베딩, 온라인 러닝, 추천 시스템

Key word : Bloom Filter, Decay, Embedding, Online Learning, Recommender System

http://dx.doi.org/10.9728/dcs.2019.20.7.1401

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 13 June 2019; Revised 10 July 2019
Accepted 25 July 2019

*Corresponding Author; Hee-Chern Kim

Tel: +82-2-3668-4657
E-mail: hckim@knou.ac.kr

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2019.20.7.1401&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5

디지털콘텐츠학회논문지(J. DCS) Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

http://dx.doi.org/10.9728/dcs.2019.20.7.1401 1402

Ⅰ. Introduction

In machine learning domain, the importance of online learning
is growing. Although cloud environment to deal with big data is
rising, there is a limit to data digestion capacity and it is still
painful to use large batch data for training at once. Online
learning can reduce the pain by using a handful of data each time.
While online learning has the property to make big data
manageable, it is also important to quickly reflect the concept
drift.

The importance of embedding is also growing. In domains
with a large users and items, how to reduce dimensions is an
important issue in modeling. Bloom filters are emerging as
storage saving[1] and embeddings in machine learning domain,
especially in recommender systems[2][3][4].

In online learning environment, since new data keeps coming
in, there is a need to reset the existing cells of a bloom filter in
order to prevent bloom filters becoming full, and there are some
algorithms related to it. However, there is no comparison as to
what characteristics each algorithm shows in the online learning
environment.

In this paper, we propose a new decay bloom filter which has a
different characteristic and compare algorithms in online learning
situation of a recommender system.

Ⅱ. Related Work

Stable bloom filter[5] sets cell values as a predefined max cell
value when inserting an item. When decaying, it decreases 1 on
randomly selected cells. It provides an algorithm to decide the
number of cells to be randomly chosen where a target false
positive rate, a dimension of bloom filter, and a max cell value
are given. This makes it easier to apply stable bloom filter in
practice. In addition, unlike double buffering bloom filter which
uses two filters, a warm-up filter and an active filter, stable bloom
Filter uses a single filter, so it costs a half amount of storage
compared to double buffering bloom filter.

Temporal counting bloom filter[6] is similar to stable bloom
filter. It sets cells as 'initial counter value' which is the same as
max cell value of stable bloom filter. The difference is that
temporal counting bloom filter decreases a cell value as much as
'decay factor', which is calculated by a provided algorithm, rather
than constant 1. Temporal counting bloom filter also uses the
same amount as stable bloom filter.

Double buffering bloom filter[7] uses two filters, a warm-up
filter and an active filter. When inserting an item, if the item is in

the active filter, it checks if it also exists in the warm-up filter,
then set corresponding cells of warm-up filter only when the
active filter is filled more than half of its capacity. If the item is
not in the active filter, it inserts the item into the active filter, then
also insert it to the warm-up filter only when the active filter is
filled more than half. Decaying of the bloom filter, 'renewing' can
be more appropriate in this case, is performed by exchanging the
warm-up filters and the active filters when the active filters are
full.

There are works in which bloom filters are used as embeddings
which represent items or users of recommender systems[2][3][4].
Usually, the dimension of user or item vectors are enormous,
dimensionality reduction is inevitable, and bloom filters can be a
way of reducing dimensions. For example, a user embedding can
be made by setting cells of a bloom filter of which indexes are
generated by applying hashing with the value of an item. An item
embedding can be generated in the same way.

Ⅲ. Probabilistic Bloom Filter

We suggest probabilistic bloom filter which resets a cell in
proportion to the inverse of the count of the cell, which results in
longer existence of important cells. We regard a cell as being
'important' when its count is high because it is used to check
existence of many items.

Inserting is performed by adding 1 to all corresponding cells,
and it updates the total sum of each count of cells and the number
of non-zero cells of the filter. To make the filter decay, it first
calculates the number of cells to reset to zero by subtracting a
predefined configured number of non-zero cells from the current
number of non-zero cells. Then it chooses non-zero cells to reset
with probabilities in proportion to the inverse of the count of the
cells. Inserting and decaying procedures are shown in Figure1 and
Figure 2, respectively.

index_list = hash(item)
for index in index_list:
 cell_value_sum += 1
 if bloom_filter[index] == 0:
 bloom_filter[index] = 1
 non_zero_cell_count += 1
 else:
 bloom_filter[index] += 1

그림 1. 블룸 필터에 항목을 삽입하는 알고리즘

Fig 1. Algorithm for inserting an item into the bloom filter

Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems

1403 http://www.dcs.or.kr

if non_zero_cell_count > threshold:
 number_of_cells_to_reset = non_zero_cell_count -

threshold
 randomly choose cells with a probability in proportion to 1

/ bloom_filter[index]
 reset chosen cells to zero
 decrease cell_value_sum and non_zero_cell_count by

calculated amounts

그림 2. 블룸 필터에 디케이를 적용하는 알고리즘

Fig 2. Algorithm for Decaying of the bloom filter

Since it always maintains a specific number of zero cells, it
never becomes full and users don't have to worry about how to
find out the correct parameter for decay. This problem about
deciding parameters related to decay is not trivial in online
learning. For stable bloom filter and temporal counting bloom
filter, algorithms are provided to decide the number of cells to
decay or the decay factor, but the resulting values are not usually
integers. So users can't help using rounded values which can
result in not guaranteeing properties like false positive rate when
they are used over a long period in online learning situations.

Ⅳ. Comparison between decay bloom

filters

We wanted to see how each bloom filter performs as an
embedding in a context of online learning of a recommender
system. So we made a bloom filter represent a user by inserting
items which the user interacted with into the bloom filter. As a
result, bloom filters were created as many as the number of users.

Movielens[8] dataset was used for the experiment because it
has been used many times as a benchmark dataset for online
learning[9][10][11] and personalized recommendation[12]. u1.test
~ u4.test of ml-100k dataset were used to calculate 4-fold cross
validation results on various parameters. Only 4 and 5 ratings
were treated as positive feedbacks and corresponding items were
inserted into a user's bloom filter. Records of the dataset were
sorted by their timestamps and the insertions were made by time
since we meant to simulate an online learning situation.

Evaluation as to how well a bloom filter performs as an
embedding was done in two aspects. The first is about precision
of a bloom filter. It describes how accurately a filter judge if an
item is stored in the filter. We measured the mean of precision of
users' bloom filters by checking if all items appeared in users'
records. The second is about the degree of preservation of
similarity between embeddings. Good user embeddings should

preserve close users closely after the dimensionality reduction is
done. We measured the degree of preservation of cosine
similarity using rank correlation(Kendall's tau) between two
similarity rank sets - one was generated by bloom filter
embeddings and the other was generated by user vectors without
dimensionality reduction of which dimension is the number of
items. Cosine similarity ranks were generated between a user and
all the other users, and this procedure was repeated on all users.

The experimental parameters for each bloom filter are shown
in Table 1. The dimension of filters and the number of hashing
are commonly applied to all bloom filters. For stable bloom filter,
the number of cells to decay is decided by other parameters like
cell max and false positive rate using the provided algorithm[5].
Likewise, the decay factor of temporal counting bloom filter is
calculated with other parameters by the algorithm[6]. As to
double buffering bloom filter, various thresholds are examined for
double buffering bloom filter rather than only 'half' for inserting
an item into a warm-up filter and 'full' for exchanging a warm-up
filter and an active filter because a full bloom filter is not so much
useful as an embedding and there is a possibility that other
thresholds for inserting are better than the threshold of 'half' when
domain differs. Probabilistic bloom filter has the smallest number
of parameters among all, and actually non-zero cell ratio, which
means how much the filter can be filled maximally (0.2 means
that more than 20% cells cannot be set), is the only one needed.

표 1. 실험에서 사용된 블룸 필터의 파라미터

Table 1. Parameters of Bloom Filters in Experiments

Some experimental results are shown in Figure 3~6. Cyan is
stable bloom filter, blue is temporal counting bloom filter, green
is double buffering bloom filter, and red is probabilistic bloom
filter. Results of every dimension can be found in Appendix.
Since there is a tradeoff between precision and rank correlation,
there are no such 'best' parameters per bloom filters. So the results
need to be interpreted by judging how far each graph of bloom

Filter Dimension Number of Hashing
Common for all

bloom filters 10, 20, ..., 150 2, 3

Cell Max False Positive Rate

Stable Bloom Filter 3, 5, 10 0.1, 0.2, ..., 0.9

Initial Counter Value False Positive Rate
Temporal Counting

Bloom Filter 3, 5, 10 0.1, 0.2, ..., 0.9

Warm-Up Threshold Swap Threshold
Double Buffering

Bloom Filter 0.3, 0.4, 0.5 0.7, 0.8, 0.9, 1.0

Non-zero Cell Ratio
Probabilistic
Bloom Filter 0.2, 0.3, ..., 0.9

디지털콘텐츠학회논문지(J. DCS) Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

http://dx.doi.org/10.9728/dcs.2019.20.7.1401 1404

filters appears from its origin as a whole. When the dimension of
bloom filters was 20, stable bloom filter showed the best results,
followed by probabilistic bloom filter and double buffering bloom
filter, and temporal counting bloom filter came at last. When the
dimension was increased to 40, 60, and 80, stable bloom filter
was the best and the second was the probability bloom filter.
Beside the results of overall performance, a unique trait of
probabilistic bloom filter was found by this experiment. It shows
far better precision than other filters when the dimension
increases. For example, in Figure 5, the best precision achieved
by probabilistic bloom filter is about 0.17 and no other filters
reach near the value. This can be a useful property when precision
is especially more important than rank correlation. We suppose
that this result is due to the trait of probabilistic bloom filter that
rarely resets important cells which are set by many items.

그림 3. 블룸 필터의 차원이 20인 경우

(청녹- 안정 블룸 필터, 파랑- 시간 카운팅 블룸 필터, 녹색- 더블

버퍼링 블룸 필터, 빨강- 확률 블룸 필터)
Fig 3. Comparison of correlation and precision with
dimension of bloom filters = 20
(Cyan- stable bloom filter, Blue- temporal counting bloom
filter, Green- double buffering bloom filter, Red- probabilistic
bloom filter)

그림 4. 블룸 필터의 차원이 40인 경우

Fig 4. Comparison of correlation and precision with
dimension of bloom filters = 40

그림 5. 블룸 필터의 차원이 60인 경우

Fig 5. Comparison of correlation and precision with
dimension of bloom filters = 60

그림 6. 블룸 필터의 차원이 80인 경우

Fig 6. Comparison of correlation and precision with
dimension of bloom filters = 80

Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems

1405 http://www.dcs.or.kr

Ⅴ. Conclusion

We compared various bloom filters which can decay as
embeddings in online learning context of recommender systems.
Besides existing bloom filters, we suggested 'probabilistic bloom
filter' which can remember important cells longer. It never makes
bloom filters full or emptier than necessary in an online learning
situation while other bloom filters can suffer such problems
because the calculated number of cells to decay or a decay factor
must be rounded to become an integer. The overall performance
over precision - rank correlation tradeoff was measured using
Movielens dataset. Stable bloom filter showed the best results
overall in this setting and probabilistic bloom filter was the
second. When it comes to precision, probabilistic bloom filter
showed that it can achieve higher precision than all the other
bloom filters at the expense of rank correlation, so we expect it to
be used in an online learning situation where precision is more
important than rank correlation.

Appendix

The figures below show the experimental results comparing
the correlation and precision of bloom filters according to the
dimension size of filters.

디지털콘텐츠학회논문지(J. DCS) Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

http://dx.doi.org/10.9728/dcs.2019.20.7.1401 1406

Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems

1407 http://www.dcs.or.kr

Acknowledgements

This research was supported by Korea National Open
University Research Fund in 2017.

References

[1] McMahan, H. Brendan, Gary Holt, David Sculley, Michael
Young, Dietmar Ebner, Julian Grady, Lan Nie et al., "Ad
click prediction: a view from the trenches," in Proceedings
of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, Chicago, USA, pp.
1222-1230, Aug. 2013.

[2] Pagare, Reena, and Anita Shinde, "Recommendation system
using bloom filter in mapreduce," International Journal of
Data Mining & Knowledge Management Process, Vol. 3,
No. 6, pp. 127-134, Nov. 2013.

[3] Pozo, Manuel, Raja Chiky, Farid Meziane, and Elisabeth
Métais, "An item/user representation for Recommender
systems based on Bloom filters," in IEEE Tenth
International Conference on Research Challenges in

Information Science (RCIS 2016), Grenoble, France, pp.
1-12, June 2016.

[4] Serrà, Joan, and Alexandros Karatzoglou, "Getting deep
recommenders fit: Bloom embeddings for sparse binary
input/output networks," in Proceedings of the Eleventh
ACM Conference on Recommender Systems, Como, Italy,
pp. 279-287, Aug. 2017.

[5] Deng, Fan, and Davood Rafiei, "Approximately detecting
duplicates for streaming data using stable bloom filters," in
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, Chicago, USA, pp.
25-36, June 2006.

[6] Zhao, Yaxiong, and Jie Wu, "The design and evaluation of
an information sharing system for human networks," IEEE
Transactions on Parallel and Distributed Systems, Vol 25,
No. 3, pp. 796-805, Mar. 2014.

[7] Chang, Francis, Wu-chang Feng, and Kang Li,
"Approximate caches for packet classification," in IEEE
INFOCOM (Vol. 4), HongKong, China, pp. 2196-2207,
Mar. 2004.

[8] GroupLens at the Univ. of Minnesota. MovieLens 100K
Dataset[Internet]. Available:
https://grouplens.org/datasets/movielens/100k/ (Accessed
03 June 2019)

[9] Blondel, Mathieu, Akinori Fujino, and Naonori Ueda,
"Convex factorization machines," in Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, Porto, Portugal, pp. 19-35, Sep.
2015.

[10] Yamada, Makoto, Wenzhao Lian, Amit Goyal, Jianhui
Chen, Kishan Wimalawarne, Suleiman A. Khan, Samuel
Kaski, Hiroshi Mamitsuka, and Yi Chang, "Convex
factorization machine for toxicogenomics prediction," in
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Halifax, Canada, pp. 1215-1224, Aug. 2017.

[11] Lin, Xiao, Wenpeng Zhang, Min Zhang, Wenwu Zhu, Jian
Pei, Peilin Zhao, and Junzhou Huang, "Online Compact
Convexified Factorization Machine," in Proceedings of the
2018 World Wide Web Conference, Lyon, France, pp.
1633-1642, Apr. 2018.

[12] Wang, Jun, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui
Xu, Benyou Wang, Peng Zhang, and Dell Zhang, "Irgan: A
minimax game for unifying generative and discriminative
information retrieval models," in Proceedings of the 40th
International ACM SIGIR conference on Research and
Development in Information Retrieval, Shinjuku, Japan,
pp. 515-524, Aug. 2017.

디지털콘텐츠학회논문지(J. DCS) Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

http://dx.doi.org/10.9728/dcs.2019.20.7.1401 1408

유찬우(Yoo, Chan Woo)

2003년 : 서울대학교 (컴퓨터공학 학사, 경영학 학사)

2012년 : 서울대학교 대학원 (공학박사-소프트웨어 공학)

2012년~2014년: LG전자

2016년~2018년: 네무스텍

2018년~현 재: 라인플러스 연구원

※관심분야： 머신러닝, 온라인 러닝, 추천 알고리즘

강환수(Kang, Hwan Soo)

1991년 : 서울대학교 대학원 (이학석사)

2002년 : 서울대학교 대학원 (공학박사수료-컴퓨터그래픽스)

1992년～1998년: 삼성에스디에스

1998년～현 재: 동양미래대학교 컴퓨터정보공학과 교수

※관심분야： 컴퓨터교육, 인공지능, 프로그래밍언어

김희천(Kim, Hee Chern)

1989년 : 서울대학교 (이학사)

1991년 : 서울대학교 대학원 (이학석사)

1998년 : 서울대학교 대학원 (이학박사)

2004년～현 재: 한국방송통신대학교 컴퓨터과학과 교수

※관심분야： 머신러닝, 소프트웨어 공학, 컴퓨터교육

	Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems
	요약
	Abstract
	Ⅰ. Introduction
	Ⅱ. Related Work
	Ⅲ. Probabilistic Bloom Filter
	Ⅳ. Comparison between decay bloom filters
	Ⅴ. Conclusion
	References

