n;l- CIXIE28I=sts|l=2X .
-+ Journal of Digital Contents Society ,
ot Vol. 20, No. 7, pp. 1401-1408, Jul. 2019 Chosk Tor

JHel=t =M AlAEe| 2212l 2 JS flet &5 =5 T

Probabilistic Bloom Filter for Online Learning in Personalized

Recommender Systems

Chan-Woo Yoo' - Hwan-Soo Kang’ - Hee-Chern Kim®*

"Line Plus Corporation

2Department of Computer Information Engineering, Dongyang Mirae University, Seoul, Korea

®Department of Computer Science, Korea National Open University, Seoul, Korea

[24
B U A 10 S 7]ofehs 5L /B WAl Folol A Qul ol ALgIT Lokl e el A g
Zo] 543 v C)A0| & A §F oM BE BE /L5 A4 FE ohs SUE BF Belh A asich 915 30 B o]
B ALgate] B FELF FAM S0 Aol TiFle] A go] bed R HEES vmelelth, Ea 7 40
AEAZE SR EE L S AL, A A B OM 73] Eo] E-0 51 gl o1} G 3ol glofA] v
A

Zﬂ r =
gol| v]3) ¢-=3h & M=y &5 2H G-t Holth A= A7 A o 7 spebu| Bl o] AlEA 2

g %iO]EJ]EV} 7FS A = = do] dojuA] %}«t—ﬁ}«t— Aol

E?‘J
2
ox
ol r

[Abstract]

Bloom filters are used as embeddings in machine learning domain because of its characteristic of remembering items with less
storage. As to online learning, a specific kind of bloom filter is needed, which can prevent filters being full as new items appear
by decay. We compared bloom filters which can decay in perspective of precision and the degree of preservation of similarities
between items using dataset for personalized recommendation. We also suggested a new bloom filter named as 'probabilistic
bloom filter', which has two advantages. First, it showed higher precision than other filters at the expense of similarities between
items while overall performance was the second to 'stable bloom filter' when it comes to precision-similarity trade-off. Second,
even in a long term, it ensures that filters are not full or empty without continuous parameter calibration.

AQlo] : 22 T, CiHo|, UMY, 2121 2|, FH A|AH
Key word : Bloom Filter, Decay, Embedding, Online Learning, Recommender System

http://dx.doi.org/10.9728/dcs.2019.20.7.1401 Received 13 June 2019; Revised 10 July 2019
This is an Open Accesg article distributed_unc_ier Accepted 25 July 2019
s the terms of the _Creatlve Common_s Attribution *Corresponding Author; Hee-Chemn Kim

Non-CommercialLicense(http://creativecommons
.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the Tel: +82-2-3668-4657

original work is properly cited. E-mail: hckim@knou.ac.kr

Copyright (©) 2019 The Digital Contents Society 1401 http://www.dcs.or.kr ~ pISSN: 1598-2009 elSSN: 2287-738X

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2019.20.7.1401&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5

CIX|" 28”2 s+5|=&FX|(J. DCS) Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

| . Introduction

In machine learning domain, the importance of online learning
is growing. Although cloud environment to deal with big data is
rising, there is a limit to data digestion capacity and it is still
painful to use large batch data for training at once. Online
learning can reduce the pain by using a handful of data each time.
While online learning has the property to make big data
manageable, it is also important to quickly reflect the concept
drift.

The importance of embedding is also growing. In domains
with a large users and items, how to reduce dimensions is an
important issue in modeling. Bloom filters are emerging as
storage saving[1] and embeddings in machine learning domain,
especially in recommender systems[2][3][4].

In online learning environment, since new data keeps coming
in, there is a need to reset the existing cells of a bloom filter in
order to prevent bloom filters becoming full, and there are some
algorithms related to it. However, there is no comparison as to
what characteristics each algorithm shows in the online learning
environment.

In this paper, we propose a new decay bloom filter which has a
different characteristic and compare algorithms in online learning

situation of a recommender system.

I. Related Work

Stable bloom filter[5] sets cell values as a predefined max cell
value when inserting an item. When decaying, it decreases 1 on
randomly selected cells. It provides an algorithm to decide the
number of cells to be randomly chosen where a target false
positive rate, a dimension of bloom filter, and a max cell value
are given. This makes it easier to apply stable bloom filter in
practice. In addition, unlike double buffering bloom filter which
uses two filters, a warm-up filter and an active filter, stable bloom
Filter uses a single filter, so it costs a half amount of storage
compared to double buffering bloom filter.

Temporal counting bloom filter[6] is similar to stable bloom
filter. It sets cells as 'initial counter value' which is the same as
max cell value of stable bloom filter. The difference is that
temporal counting bloom filter decreases a cell value as much as
'decay factor', which is calculated by a provided algorithm, rather
than constant 1. Temporal counting bloom filter also uses the
same amount as stable bloom filter.

Double buffering bloom filter[7] uses two filters, a warm-up

filter and an active filter. When inserting an item, if the item is in

http://dx.doi.org/10.9728/dcs.2019.20.7.1401

the active filter, it checks if it also exists in the warm-up filter,
then set corresponding cells of warm-up filter only when the
active filter is filled more than half of its capacity. If the item is
not in the active filter, it inserts the item into the active filter, then
also insert it to the warm-up filter only when the active filter is
filled more than half. Decaying of the bloom filter, 'renewing' can
be more appropriate in this case, is performed by exchanging the
warm-up filters and the active filters when the active filters are
full.

There are works in which bloom filters are used as embeddings
which represent items or users of recommender systems[2][3][4].
Usually, the dimension of user or item vectors are enormous,
dimensionality reduction is inevitable, and bloom filters can be a
way of reducing dimensions. For example, a user embedding can
be made by setting cells of a bloom filter of which indexes are
generated by applying hashing with the value of an item. An item

embedding can be generated in the same way.

IIl. Probabilistic Bloom Filter

We suggest probabilistic bloom filter which resets a cell in
proportion to the inverse of the count of the cell, which results in
longer existence of important cells. We regard a cell as being
'important' when its count is high because it is used to check
existence of many items.

Inserting is performed by adding 1 to all corresponding cells,
and it updates the total sum of each count of cells and the number
of non-zero cells of the filter. To make the filter decay, it first
calculates the number of cells to reset to zero by subtracting a
predefined configured number of non-zero cells from the current
number of non-zero cells. Then it chooses non-zero cells to reset
with probabilities in proportion to the inverse of the count of the
cells. Inserting and decaying procedures are shown in Figurel and

Figure 2, respectively.

index_list = hash(item)
for index in index_list:
cell value sum+=1
if bloom_filter[index] = 0:
bloom filter[index] = 1
non_zero_cell count += 1
else:
bloom filter[index] += 1

J8 1. 25 ZHo g5s delske LualE

Fig 1. Algorithm for inserting an item into the bloom filter

Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems

if non zero cell count > threshold:
number of cells to reset = non zero cell count -
threshold
randomly choose cells with a probability in proportion to 1
/bloom_filter[index]
reset chosen cells to zero
decrease cell value sum and non zero cell count by

calculated amounts

J8 2. =& ZHoll CI7olE HM3sts gu2lE

Fig 2. Algorithm for Decaying of the bloom filter

Since it always maintains a specific number of zero cells, it
never becomes full and users don't have to worry about how to
find out the correct parameter for decay. This problem about
deciding parameters related to decay is not trivial in online
learning. For stable bloom filter and temporal counting bloom
filter, algorithms are provided to decide the number of cells to
decay or the decay factor, but the resulting values are not usually
integers. So users can't help using rounded values which can
result in not guaranteeing properties like false positive rate when

they are used over a long period in online learning situations.

V. Comparison between decay bloom
filters

We wanted to see how each bloom filter performs as an
embedding in a context of online learning of a recommender
system. So we made a bloom filter represent a user by inserting
items which the user interacted with into the bloom filter. As a
result, bloom filters were created as many as the number of users.

Movielens[8] dataset was used for the experiment because it
has been used many times as a benchmark dataset for online
learning[9][10][11] and personalized recommendation[12]. ul.test
~ ud.test of ml-100k dataset were used to calculate 4-fold cross
validation results on various parameters. Only 4 and 5 ratings
were treated as positive feedbacks and corresponding items were
inserted into a user's bloom filter. Records of the dataset were
sorted by their timestamps and the insertions were made by time
since we meant to simulate an online learning situation.

Evaluation as to how well a bloom filter performs as an
embedding was done in two aspects. The first is about precision
of a bloom filter. It describes how accurately a filter judge if an
item is stored in the filter. We measured the mean of precision of
users' bloom filters by checking if all items appeared in users'
records. The second is about the degree of preservation of

similarity between embeddings. Good user embeddings should

preserve close users closely after the dimensionality reduction is
done. We measured the degree of preservation of cosine
similarity using rank correlation(Kendall's tau) between two
similarity rank sets - one was generated by bloom filter
embeddings and the other was generated by user vectors without
dimensionality reduction of which dimension is the number of
items. Cosine similarity ranks were generated between a user and
all the other users, and this procedure was repeated on all users.
The experimental parameters for each bloom filter are shown
in Table 1. The dimension of filters and the number of hashing
are commonly applied to all bloom filters. For stable bloom filter,
the number of cells to decay is decided by other parameters like
cell max and false positive rate using the provided algorithm[5].
Likewise, the decay factor of temporal counting bloom filter is
calculated with other parameters by the algorithm[6]. As to
double buffering bloom filter, various thresholds are examined for
double buffering bloom filter rather than only 'half for inserting
an item into a warm-up filter and 'full' for exchanging a warm-up
filter and an active filter because a full bloom filter is not so much
useful as an embedding and there is a possibility that other
thresholds for inserting are better than the threshold of 'half' when
domain differs. Probabilistic bloom filter has the smallest number
of parameters among all, and actually non-zero cell ratio, which
means how much the filter can be filled maximally (0.2 means

that more than 20% cells cannot be set), is the only one needed.

E 1. MM ARRE EF ZE9l mi2lo|H
Table 1. Parameters of Bloom Filters in Experiments

Filter Dimension Number of Hashing
Common for all
bloom filters 10, 20, ..., 150 2,3
Cell Max False Positive Rate
Stable Bloom Filter 3,5, 10 0.1,0.2,..,09

Initial Counter Value False Positive Rate

Temporal Counting

Bloom Filter 3,5, 10 0.1,0.2,...,09
Warm-Up Threshold Swap Threshold
Double Buffering 03,04,0.5 0.7,0.8,0.9,1.0
Bloom Filter
Non-zero Cell Ratio
Probabilistic
Bloom Filter 0.2,03,..,0.9

Some experimental results are shown in Figure 3~6. Cyan is
stable bloom filter, blue is temporal counting bloom filter, green
is double buffering bloom filter, and red is probabilistic bloom
filter. Results of every dimension can be found in Appendix.
Since there is a tradeoff between precision and rank correlation,
there are no such 'best' parameters per bloom filters. So the results
need to be interpreted by judging how far each graph of bloom

http://www.dcs.or.kr

C| x| 28l = 53] =2X|(J. DCS) Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

filters appears from its origin as a whole. When the dimension of
bloom filters was 20, stable bloom filter showed the best results,
followed by probabilistic bloom filter and double buffering bloom
filter, and temporal counting bloom filter came at last. When the
dimension was increased to 40, 60, and 80, stable bloom filter
was the best and the second was the probability bloom filter.
Beside the results of overall performance, a unique trait of
probabilistic bloom filter was found by this experiment. It shows
far better precision than other filters when the dimension
increases. For example, in Figure 5, the best precision achieved
by probabilistic bloom filter is about 0.17 and no other filters
reach near the value. This can be a useful property when precision
is especially more important than rank correlation. We suppose
that this result is due to the trait of probabilistic bloom filter that

rarely resets important cells which are set by many items.

030 {

a8 3. &5 ZE9 xHol 20¢! E9

— o
(B=- oy 28 ZH, oiEd- AlZk 7128 25 2, =4 U2
HEHY S8 ZH, ¥Z- 8 =8 ZH)

Fig 3. Comparison of correlation and precision with
dimension of bloom filters = 20
(Cyan- stable bloom filter, Blue- temporal counting bloom

filter, Green- double buffering bloom filter, Red- probabilistic

bloom filter)

http://dx.doi.org/10.9728/dcs.2019.20.7.1401

1404

dim 40

o o 058 ’ alo
28 4. 28 Hele] A2lo] 4091 A

Fig 4. Comparison of correlation and precision with
dimension of bloom filters = 40

dem 60

a0t 13 oou 010 [3H au 016

Jg 5. 25 ZEel X0l 602l 29
Fig 5. Comparison of correlation and precision with
dimension of bloom filters = 60

dim- 80

T Bio0 a1 [T i 1300
il

g 6. 25 ZEQ xR0l 80¢ &9
Fig 6. Comparison of correlation and precision with
dimension of bloom filters = 80

Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems

V. Conclusion

We compared various bloom filters which can decay as
embeddings in online learning context of recommender systems.
Besides existing bloom filters, we suggested 'probabilistic bloom
filter' which can remember important cells longer. It never makes
bloom filters full or emptier than necessary in an online learning
situation while other bloom filters can suffer such problems
because the calculated number of cells to decay or a decay factor
must be rounded to become an integer. The overall performance
over precision - rank correlation tradeoff was measured using
Movielens dataset. Stable bloom filter showed the best results
overall in this setting and probabilistic bloom filter was the
second. When it comes to precision, probabilistic bloom filter
showed that it can achieve higher precision than all the other
bloom filters at the expense of rank correlation, so we expect it to
be used in an online learning situation where precision is more

important than rank correlation.

Appendix

The figures below show the experimental results comparing

the correlation and precision of bloom filters according to the
dimension size of filters.

dim. 10

525

stable bloom filter
e temporal counting bloom filter
» double buffering bloom filter
probabilistic bloom filter.

015

coreelation

a1

o725 B0

precision

pazze 00175 25760 00235 amrs B35

1405

dim. 29

o2

o1

X

B
precisian

dim. 39

o2

Corvelation

505, 456
precision

508

dim. 40

030

<oreeiation

o1

835

5ia oiz
pecision

dim. 50

coreetstion

o1

B

5 455 0o&
precisian

sia iz ais

http://www.dcs.or.kr

o
Ral

Il
Th
g
[
il
o
i

2X|(J. DCS) Vol. 20, No. 7, pp.

dirn. 60

1401-1408, Jul

535

530

“ontelation

precisian

dim. 70

o0s o05 B sio siz 514 3

535

azs °

convelation

520

6058 oo7s %156 5125 475 o175
precision

dim. 80

0328

<erelation
.
®

5225

315

3

[bazs 3l 2750 35 o2

w350

0328

o3

“oweelation

6225

5230

0050 ags aio 525 5175 5200 a7,

http://dx.doi.org/10.9728/dcs.2019.20.7.1401

3%

1406

. 2019

dim: 103

a0

a5

s

adse

EE ai% B o0 0225

ecision

dim 110

EEE

034 |

030

0e |

ols od0 03
precisien

dim: 120

530

£
2

02

2z

azs

35 [B3
pecision

dim: 130

53a

coreetstion
e
E

oz

Bis, e2a s
precisian

Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems

dim: 130

dim: 350

Acknowledgements

This research was supported by Korea National Open
University Research Fund in 2017.

References

[1] McMahan, H. Brendan, Gary Holt, David Sculley, Michael
Young, Dietmar Ebner, Julian Grady, Lan Nie et al., "Ad
click prediction: a view from the trenches," in Proceedings
of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, Chicago, USA, pp.
1222-1230, Aug. 2013.

[2] Pagare, Reena, and Anita Shinde, "Recommendation system
using bloom filter in mapreduce," International Journal of
Data Mining & Knowledge Management Process, Vol. 3,
No. 6, pp. 127-134, Nov. 2013.

[3] Pozo, Manuel, Raja Chiky, Farid Meziane, and Elisabeth
Métais, "An item/user representation for Recommender

in [EEE Tenth

International Conference on Research Challenges in

systems based on Bloom filters,"

1407

Information Science (RCIS 2016), Grenoble, France, pp.
1-12, June 2016.

[4] Serra, Joan, and Alexandros Karatzoglou, "Getting deep
recommenders fit: Bloom embeddings for sparse binary
input/output networks," in Proceedings of the Eleventh
ACM Conference on Recommender Systems, Como, Italy,
pp. 279-287, Aug. 2017.

[5] Deng, Fan, and Davood Rafiei, "Approximately detecting
duplicates for streaming data using stable bloom filters," in
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, Chicago, USA, pp.
25-36, June 2006.

[6] Zhao, Yaxiong, and Jie Wu, "The design and evaluation of

an information sharing system for human networks," /EEE

Transactions on Parallel and Distributed Systems, Vol 25,

No. 3, pp. 796-805, Mar. 2014.

Chang, Francis, Wu-chang Feng, and Kang Li,
"Approximate caches for packet classification," in /EEE
INFOCOM (Vol. 4), HongKong, China, pp. 2196-2207,
Mar. 2004.

[8] GroupLens at the Univ. of Minnesota. MovieLens 100K

Available:
https://grouplens.org/datasets/movielens/100k/ (Accessed
03 June 2019)

[9] Blondel, Mathieu, Akinori Fujino, and Naonori Ueda,

in Joint European

Dataset[Internet].

"Convex factorization machines,"
Conference on Machine Learning and Knowledge
Discovery in Databases, Porto, Portugal, pp. 19-35, Sep.
2015.

[10] Yamada, Makoto, Wenzhao Lian, Amit Goyal, Jianhui
Chen, Kishan Wimalawarne, Suleiman A. Khan, Samuel
Kaski, Hiroshi Mamitsuka, and Yi Chang, "Convex
factorization machine for toxicogenomics prediction," in
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Halifax, Canada, pp. 1215-1224, Aug. 2017.

[11] Lin, Xiao, Wenpeng Zhang, Min Zhang, Wenwu Zhu, Jian
Pei, Peilin Zhao, and Junzhou Huang, "Online Compact
Convexified Factorization Machine," in Proceedings of the
2018 World Wide Web Conference, Lyon, France, pp.
1633-1642, Apr. 2018.

[12] Wang, Jun, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui
Xu, Benyou Wang, Peng Zhang, and Dell Zhang, "Irgan: A
minimax game for unifying generative and discriminative
information retrieval models," in Proceedings of the 40th
International ACM SIGIR conference on Research and
Development in Information Retrieval, Shinjuku, Japan,
pp. 515-524, Aug. 2017.

http://www.dcs.or.kr

CIX|" 28”2 s+5|=&FX|(J. DCS) Vol. 20, No. 7, pp. 1401-1408, Jul. 2019

F2&k2(Yoo, Chan Woo)

20034 - MEdEgn (HFHE
20124 - MEdEa ok (¥
]_

20121172014d: LGA
. 20161172018\ v - 2-H)

20187 A IS A
ARl walYY, &gl ¥y, 21 dugZ

ZH&lE(Kang, Hwan Soo)

4 Aeriea oee
SRRt L

19921 ~1998d: AHAd ol 22t of] 2~
1998 ~ A A FFm et AFE AR T

A

HBAROE: AFENE, ABA%S, TPl

20049~ 8 A AFWEEA NS 7 3)

5
HPARoF: WA, AzEg o] T, AFEHLS

http://dx.doi.org/10.9728/dcs.2019.20.7.1401

1408

	Probabilistic Bloom Filter for Online Learning in Personalized Recommender Systems
	요약
	Abstract
	Ⅰ. Introduction
	Ⅱ. Related Work
	Ⅲ. Probabilistic Bloom Filter
	Ⅳ. Comparison between decay bloom filters
	Ⅴ. Conclusion
	References

