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[Abstraci]

Most of these are used to discover frequent event sequences from time-point-based events. However, these frequent event
sequences do not clearly represent the causal relationship among events. If a sequence of events of the same type is summarized
into one interval-based event, we can discover temporal interval relations from interval-based events. From these temporal interval
relations, causal relations among interval-based events can be easily found. In this paper, we proposed a new method that mines
causal relations from time-point-based events. Experiments were performed in this study to evaluate three methods (DFCR-FIR,
DFCR-FIRc, and DFCR-CRc) to discover the causal relations and temporal interval relations from time-point-based events.
DFCR-FIR and DFCR-FIRc discover frequent causal relations from frequent temporal interval relations. DFCR-CRc discovers
frequent causal relations from the causal relations. We found that DFCR-CRc provides more useful and effective knowledge than
two methods DFCR-FIR and DFCR-FIRc.
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| . Introduction

Data mining is a technology used to analyze a large amount of

accumulated data and to extract valuable knowledge from the

data for decision-making. It can be widely used in areas such as
market analysis, decision support, fraud detection, customer

classification, medical care, and so on [1], [2], [3], [4], [25].

Recently, many works have focused on the temporal data

mining for discovering temporal knowledge from a temporal

data set. The knowledge consists of sequential patterns [5],

periodic patterns [6], frequent episodes [3], frequent temporal

interval relations [7], similarity [8], and causality of events [9],

[10], [11], [12], [13], [14], [15].

Temporal data sets can be classified into either a time
point-based data set or an interval-based data set. When a
time-point-based event data from stream data sources is
gathered, its interval or duration to represent its continuity is
generally not known. Thus, an interval-based data set is
typically obtained from a time-point-based data set. An
interval-based event holds summarized information of
time-point-based events. From the temporal relations of
interval-based events, called “temporal interval relations”, more
important knowledge can be discovered such as the causality of
events.

Also, a temporal data set can be classified into four categories
according to the number of streams and the number of
concurrent events as follows:

1. Single Stream and Single Event (SSSM) [3]; SSSM is a set of
events from single stream, where one time slot contains only
one event.

2. Single Stream and Multiple Events (SSME) [4], [6], [8];
SSME is a set of events from a single stream, where one time
slot contains multiple events.

3. Multiple Streams and Single Events (MSSE); MSSE is a set
of events from multiple streams, where one time slot contains
only one event.

4. Multiple Streams and Multiple Events (MSME) [7], [9], [16];
MSME is a set of events from multiple streams, where one
time slot contains multiple events.

The sequential pattern mining problem was introduced by
Agrawal and Srikant [17]. Sequential pattern mining is used to
find all frequent subsequences from a set of sequences. From
frequent patterns, we can find the order of events. This order can
be used in a business strategy. Examples of interval-based event
data include library lending, stock fluctuation, patient diseases,
meteorology data, etc. Wu and Chen [7] defined a new type of
non-ambiguous temporal pattern for interval-based event data.
They found that patterns discovered by the Allen-based
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approach have ambiguity problems. To solve the ambiguity
problems, he proposed the TPrefixSpan algorithm.

In this paper, we propose a new temporal data mining
method that discovers temporal interval relations between
interval-based events which are computed from a
time-point-based data set. Also, we will discuss the casual
relations among interval-based events. The objective of our
research is to develop an algorithm to process big-data from a
selected hospital. Each department in the hospital treats many
patients and produces medical records for the patients. Each
medical record has several events (symptoms or the result of
check-ups). Each patient is a stream source and one medical
record contains many events. Therefore, we selected the MSME
data set.

The basic concept of our method is summarized as follows,
in which temporal interval relations and causal relations are
discovered from a MSME data set:

1. Compute frequent event types from MSME data set

2. For each stream and each frequent event type, compute
continuous event sequences from MSME data set

3. Summarize each continuous event sequence into one
interval-based event

4. Discover temporal interval relations from interval-based
events

5. Discover causal relations from temporal interval relations

6. Discover frequent causal relations from a set of causal
relations

7. Compute the net effect of events on other events from
component graphs for frequent causal relations.

Generally, patient medical records are stored in a
hospital database in the timestamp order. From the
hospital database, we aim to discover rules (or
knowledge) to properly treat patients. Our method can be
easily applied to the medical field for discovering useful
and effective knowledge (frequent causal relations).

The remainder of the paper is organized as follows. In
Chapter II, we discuss the related works. In Chapter III, the
terminologies and definitions related to temporal relations and
causal relations are described. In Chapter IV, our algorithm for
mining temporal interval relations among interval-based events
and their causal relations is described. In Chapter V, the
proposed method is analyzed through the experiments. In

Chapter VI, the conclusion and future works are discussed.

[I. Related Works

Temporal data mining discovers useful knowledge from a
temporal data set. Temporal data mining methods and their
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mining results can contain frequent event sequences [4], [16],
frequent episodes [3], periodic patterns [6], frequent temporal
interval relations [7], causality of events [9], [10], [11], [12],
[13], [14], [15], or similarity [8]. Several variations of the
Apriori algorithm have been proposed to improve basic
sequential pattern mining algorithms such as GSP [17] and
SPIRIT [18]. GSP is a technique used to discover generalized
sequential patterns that incorporate user-specified time
constraints. SPIRIT is a technique used for discovering all
frequent sequences that satisfy a user-defined regular
expression constraint. An episode has a collection of events
with a partial order. Mannila, et al. [19] introduced the
framework of frequent episodes discovery in event sequences.
Laxman et al. [3] introduced generalized episodes. A
generalized episode incorporates event duration information
explicitly with the episode structure. Each event in the episode
has a duration which is previously determined by the domain
specialists. Frequent generalized episodes assist the diagnosis of
root causes of persistent fault situations. Periodic patterns are
recurring patterns that have temporal regularities in a
time-series data set. Huang et al. [6] proposed a more general
model of asynchronous periodic patterns from a sequence of
event sets where a time slot can contain multiple events.

More recently, studies on mining useful patterns from
temporal interval data have been initiated [20], [21], [22].
However, since the temporal relation rule discovery from
interval data is very complicated, no noticeable progress has
been made thus far. Also, summarizing a sequence of events
into one interval-based event is unreasonable because some
events in the sequence cannot be continuous or persistent. The
sequence of events needs to be split into continuous
subsequences and each subsequence needs to be summarized
into one interval-based event. Periodic patterns exist in many
types of data. For example, tides, planet trajectories, daily
traffic patterns, and power consumptions present certain
periodic patterns. Many emerging applications have been made,
including stock market price movement, earthquake prediction,
telecommunication network fault analysis, repeat detection in
DNA sequences, and occurrence of recurrent illnesses. In [9],
[14], [15], a method was proposed to detect adverse drug
reactions. This is a domain-driven data mining method.

In [22], a method for finding the temporal interval relation
rules from a temporal data set was proposed. The method can
extract temporal interval relation rules from a temporal interval
data set by using Allen's theory. However, the method does not
measure the extent to which one event affects another event. If
we can determine the degree of influence of each event, we can

find a major source event for a specific event. If we have

knowledge of the time-gap between interval-based events, we
can also find very useful knowledge that can predict the
occurrence time of future events. In [23], a method of mining
positive and negative association rules was proposed. Positive
association rules have a positive effect and negative association
rules have a negative effect on association rules. However,
there is a limit to analyzing the causality among events since
the method computes an influence using association rules based
only on the support of events and the confidence of association
rules. Thus, it is necessary to develop a new measurement to
represent the causality among events. Terminologies and
definitions related to temporal interval relations and causal
relations will be given in this section. Also, the way in which
causal relations are discovered from temporal interval relations
will be discussed.

Relation and

. Temporal Interval

Causal Relations

Terminologies and definitions related to temporal interval
relations and causal relations will be given in this section. Also,
the way in which causal relations are discovered from temporal

interval relations will be discussed.
3-1 Terminologies and Definitions

A temporal data set DB is a database of time-stamped
transactions. In this paper, a patient and a customer will be
interchangeably used as an issuer of a transaction. In general,
for one medical check-up of a patient, one medical record will
be produced. The medical record is a transaction. A patient can
be considered as a source of a stream of data (or transactions).
Let 7S and ETS be a set of primitive time-points and a set of
event types, respectively. An event e is defined by triple
attributes such as e = (Cid, E, t), where Cid is a customer who
issues an event e, E(E €ETS) is an event type, and #((t ETS) is a
time-point at which an event e has occurred. Examples of
events include patient symptoms, the failures of products,
environmental changes, visited web pages, etc. A transaction is
a set of events which have occurred at a time-point. Each
transaction has attributes such as a customer Cid, a
transaction-time ¢, and a set of events ES. A patient can
sequentially issue several transactions. For example, a patient
can periodically take a medical check-up. Each medical
check-up is represented by a transaction. One medical check-up
can show multiple symptoms. Each symptom is an event in a

transaction. Each customer can issue only one transaction at
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one time-point. Thus, all events in a transaction have the same
timestamp. DB is a set of transactions which are expressed by a
form (Cid, ES, ), where ES is a set of events contained in a
transaction which is issued at a time-point # by a customer Cid.
Transactions contained in DB are ordered by Cid and ¢. Let a
sequence of transactions issued by a customer Cid be
SeqTrans(Cid) =<TI, T2, -+, Tn >. An event sequence consists
of the same type of events selected from SeqTrans(Cid). A
sequence of events for a customer Cid and event type E is
defined, as in Definition I below. In this paper, an event
sequence is a sequence of the same type of events.

Temporal relations between time-point-based events cannot
easily represent the causality between events since events
generally persist for some duration. To capture the overall
temporal relation among events, we will focus on the sequences

of events.

Definition 1. (An event sequence for a customer Cid and
eventtype E) An event sequence for a customer Cid and event
type E, ESeq(Cid, E), is defined by a sequence <el, e2, -,
em>, where ei=(Cid, E, t;), ti<ti+; for eachi= 1,2, --, m-1. el
ETIENCid), e2€T2<€T(Cid), -, emETmET(Cid), and
Etype(el)=Etype(e2)=, ‘-, =Etype(em)=E. Etype(e) denotes the
type of event e. T(Cid) is a set of transactions issued by a
customer Cid. Also, a set of event sequences for a customer Cid
is defined by SS(Cid) ={ESeq(Cid, E)|JEESETS(Cid)}. ETS(Cid)
is a set of event types issued by a customer Cid. A set of event
sequences is defined as follows. DBseq=U ciue cuse SS(Cid),

where Cust is a set of customers.

From DB, we can obtain a database of event sequences,
DBseq, defined by Definitionl. Let a set of customers be
Cust={Cid,, Cid, -+-, Cid,}. DBseq is represented by SS(Cust)
= SS(Cid;) USS(Cidz) U - USS(Cid,).

In this paper, we will consider only the event sequences of
the same type of events of each customer. If the events in the
sequence persist, it is reasonable to summarize each event
sequence into one interval-based event defined by Definition 2.
When an event E is included in SS(Cid), we state that a
customer Cid supports E. The support count of £ is denoted by
SupCount(E) and it is the number of customers supporting E in
DB. Sup(E) is represented by an expression Sup Count(E)/Ncust.
Ncust is the number of customers in DB. If Sup(E) = MinSup
(the minimum support chosen by a user), E is a frequent event.
MinSup is the ratio of the support count for the total number of
customers. MinSup is determined by applications. If an
application requires high MinSup, highly frequent events are
considered for mining temporal relations. As the MinSup
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increases, the number of general temporal relations we can

obtain from a data set also increases.

Definition 2. (An interval-based event) An interval-based event,
ie, is denoted as ie = (Cid, E, [vs, ve]), where vs and ve
represent the start time and end time of an event E, respectively.
For an interval-based event ie, its start and end time are
represented as ievs and ieve, respectively. A set of
interval-based events for a customer Cid is denoted as /ES(Cid).

An event sequence can be converted into one interval-based
event if its event is continuous or persistent. To meaningfully
summarize an event sequence into an interval-based event, the
time-gap (7gap) between adjacent events in the event sequence
must be less than a given time-threshold value Tg,. The
time-threshold value Tg, can differ according to the application
areas. We can define Constraintrg, as the expression, 7gap < T
eap- If Constraintrg, is not satisfied, we can consider that the
event is not continuous in the time-gap. For example, if there
are two symptoms, a cold (due to influenza) on the 1% of
January and a cold on the 1% of May, the first cold would not
generally persist up to the 1% of May.

For each sequence in SS(Cust), if it is continuous, it can be
summarized into an interval-based event. An interval-based
event means that the event occurs continuously in its time
interval. A continuous event sequence ESeq(Cid, E) can be
summarized into one interval-based event (Cid, E, [vs, ve]).
(Cid, E, [vs, ve]) means that an event E has occurred
continuously in the temporal interval [vs, ve].

Summarizing a discontinuous event sequence into one
interval-based event is not reasonable. For example, if the
time-gap between adjacent events in an event sequence is larger
than a given time-threshold value Tgp, We can assume that the
two events around the time-gap are discontinuous within the
time-gap. Thus, it is reasonable to divide the discontinuous
sequence into continuous subsequences and summarize each
subsequence into one interval-based event. For example, let an
event sequence be ES(Cid, E) =< (Cid, E, 1) (Cid, E, 3) (Cid, E,
4) (Cid, E, 8) (Cid, E, 10)>. If a given time-threshold T, is 3,
the sequence is split into two subsequences < (E, 1)(E, 3)(E, 4)
> and < (E, 8)(E, 10) >. These are then summarized into (Cid,
E, [1, 4]) and (Cid, E, [8, 10]), respectively.

3-2 Temporal Interval Relations
For two interval-based events, x and y, they have a binary

temporal interval relation, @(x, y), where @ denotes a binary

temporal interval relation between two interval-based events x
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and y. The binary temporal interval relations are based on the
temporal relation operators proposed by Allen [24]. To discover
causal relations, we will consider only three operators of

Allen’s temporal relation operators as in Definition 3 below.

Definition 3. (Temporal interval relation) A temporal interval
relation O(x, y) is defined as follows. @ is an operator in a set
of operators such as before, during, and overlap.

® before(x, y) : (x.ve < y.vs)

® overlap(x, y) : (x.vs <y.vs) " (x.ve < y.ve) " (y.vs <x.ve)

® during(x, y) : (.vs < x.vs) " (x.ve < y.ve)

The following operators such as ‘equals’ and ‘meets’ of
Allen’s temporal relation operators can be represented by
‘during’ and ‘before’, respectively.
® equals(x, y) : (x.vs =y.vs) " (x.ve = y.ve)
® meets(x, y) : x.ve = y.vs
We can assume that equals(x,y) is a special case of during(x,y)
and meets(x,y) is a special case of before(x,y). However, from
equals(x,y), we cannot determine the cause and effect between

them because their start-times are identical.

3-3 Causal Relations

Knowledge of the causal relations of events is very valuable for
predicting future events. We will define causal relations

between interval-based events as shown in Definition 4.

Definition 4. (Causal relation between interval-based events x

and y) A causal relation occurs between x and y if one of the

following conditions is satisfied.

e Condition 1: before(x,y) *~ Constraintyor, Where
Constraintyesore 18 (1. vs-x.ve < thefore)

e Condition 2: overlap(x,y) *~ Constraintoerp, Where
Constraintoyeriap 18 (v.vs-x.vs = toverlap)

e Condition 3: during(xy) *» Constraintayring, Where

Constraintauing 18 (X. VS-Y. VS = Tauring)

A causal relation between interval-based events x and y is
denoted by the notation “x—=". There, Toveriap, ANA Tyuring are
time-threshold values determined by domain experts. They are
required for temporal relations to become effective casual
relations.

The constraints in Definition 4 are determined by domain
experts. “before(x,y)’y.vs-x.ve)<twefore indicates that an event x
precedes another event y while satisfying a given

Constraintpepore. If Constraintyenre is not satisfied, then a

sufficient time gap occurs in which an event x does not have an
effect on event y. “overlap(X,y)\y.vs-x.vs)>Toverlap . Shows that
after an event x occurred, an event y has occurred after at least a
given time-threshold value Toverp has elapsed. In addition, y
continues until after x has finished. Thus, we can assume that x
is the cause of y. “during(x, y)Nx.vs=.vs)>Tquring” indicates that
an event x occurs and ends in the lifetime of event y and event x
must occur after at least the time threshold value Tauring from the
start of event y. Also, we can assume that y is the cause of x. If
Constraintovertap and Constraintaing are satisfied, enough time
must have elapsed for the “cause-and-effect” relation to come
into being. Time-threshold values Toefore,Toverlap ,aNd Tauring Can
differ according to the applications.
V. Algorithm for Mining Temporal
Interval Relations

In this section, we introduce an algorithm for mining
temporal interval relations among interval-based events and
their causal relations. It consists of the summarization of event
sequences into interval-based events, as well as the discovery of
temporal interval relations among interval-based events, and
their causal relations. From causal relations, the degree of the
cause-and-effect between interval-based events will be
computed.

4-1 Algorithm

DB is a database of transactions. Each transaction
consists of a customer Cid, a transaction-time ¢, and a set
of events. A customer can issue one transaction at one
time-point. That is, all of the timestamps of transactions
issued from a customer differ. All events in a transaction
have the same timestamp. Our algorithm can be
summarized as shown in Table 1. In Step 3, a sequence of
time-point-based events was split into subsequences if the
sequence is not continuous. If a discontinuous sequence of
the same type of events is summarized into one interval
event, the interval event might not reasonably represent
the actual interaction of events, as in Example 1. In Step 5,
Tinerval-eap 1S Needed to remove meaningless temporal

interval relations. Tinterval-gap 1S greater than Tgp.
Example 1. Suppose that event sequences occur such as ES(Cid,

A) =< (Cid, 4, 1)(Cid, 4, 3)(Cid, 4, 4) (Cid, 4, 10)(Cid, 4, 12)
>, ES(Cid, B) =< (Cid, B, 3)(Cid, B, 6) >, and ES(Cid, C) =<

http://www.dcs.or.kr
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(Cid, C, 7)(Cid, C, 9)>.
Case 1: Tgap is not considered.
Three interval events <Cid, 4, [1,12]>, <Cid, B, [3,6]>, and
<Cid, C, [7,9]> are discovered. From these three interval
events, the causal relations, 4—B and 4—C, are discovered.
Case 2: Tgap is considered and Tgp is 3.
<Cid, A, [1,12]> is split into two interval relations, <Cid, 4,
[1,4]> and <Cid, A4, [10,12]>. In this case, causal relations, 4—
B and C—4, are discovered.
Case 2 is more reasonable than Case 1 because an event 4 does
not persist in an interval [5,9] (7gap> Tyq). Case 1 and Case 2
have different meanings because their causal relations differ.
All causal relations among events can be expressed by a
directed graph, called CR-Graph. CR-Graph is defined in
Definition 5. In CR-Graph, a node represents an interval-based
event and an edge denotes a causal relation. Also, each edge x
—y has a label Cust(x—y), which is a set of customers who
support the causal relation.

Definition 5. (Causal Relation Graph: CR-Graph) CR-Graph is
a directed graph. Each node represents an interval-based event.
Each edge represents the causal relation between two
interval-based events. The label on an edge denotes a set of

customers who support the causal relation.

We can find frequent component graphs for causal relations
from CR-Graph by examining the labels on the edges of
CR-Graph. Assume that a component graph (A—C<3B) in
CR-Graph is frequent and its support count is 50. If Cus#(4—C)
and Cust(B—C) have 100 customers and 50 customers,
respectively, and the support counts of interval-based events A4
and B are 200 and 50, respectively, we can infer that event B is
the essential cause of C rather than event 4 because C always
occurs when B occurs.

Discovering the cause-and-effect among events from causal
relations considering only their supports has some
shortcomings. Assume that the support of causal relation 4—8
and the support of event 4 are 0.3 and 0.3, respectively. If the
confidence is used as the measure of causality, we can only
infer that event A has an absolute effect on event B since the
confidence of causal relation 4—B8 is 1. If the support of B is
0.7, B can be due to other causes. Thus, we need a new
evaluation measurement to show the rate of the effect of 4 on
B. Let A—B be a causal relation in CR-Graph. We will define a
new measurement NetEff(A—B) which computes the rate of the
net effect of 4 on B. The measurement NetEff{4—B) is defined
in Definition 6.

http://dx.doi.org/10.9728/dcs.2018.19.12.2403

Definition 6. Net effect of X on B, NetEff{X—B), is defined as
follows.

NetEff(X - B) = 1(MRE5) 4 S0y — max(f (2T 22+
supll=B)y v, Be FCRAX =Y

sup(E)
where FCR 15 a set of frequent causal relations. }

Expression 1: Eff(X = B) = (S‘:i(;‘;;fl s‘:i(;;;fl)

Expression 2: max{: (%Y(;f) + sﬁigzgfln Y—=BEFCRAX+Y}

sup(X—E)

Part “supcx;  of Expression I denotes the rate that an event B can

sup(X—E)
occur when an event X occurs. Part Tsupe; of Expression 1

denotes the portion of B affected by X. Eff{X—B) is represented
by an average of two parts. Expression 2 is the maximum effect
of other events on B. The net effect of X on B is represented by
Eff(X—B) - max{Ef(Y—B)| Y>BEFCRNX=Y}. By using
NetEff, we can order the net effects of interval-based events in a
component graph of CR-Graph. The ordered NetEffs of causal
relations in a component graph can be used to discover the
major source events for a target event.

Our algorithm (see Table 1) discovers a set of frequent causal
relations from a set of temporal interval relations. We call our
algorithm DFCR-CRc (Discovering Frequent Causal Relations
from Causal Relations which can be from infrequent temporal
interval relations). We can consider another algorithm to
discover causal relations from only frequent temporal relations,
called DFCR-FIRc (Discovering Causal Relations from
Frequent Temporal Interval Relations). DFCR-CRc discovers
more frequent causal relations than DFCR-FIRc because
different temporal interval relations (which can be infrequent)
can be transformed into the same causal relation.

Table 1. Algorithm (DFCR-CRc) to discover frequent

causal relations from causal relations

Input: a set of time-point-based events

QOutput: frequent causal relations

Step1: Computing a set of frequent event types.

Let DBsort be a set of transactions sorted according to
customer identifiers and their timestamps. Count(E) is
a support count for an event E, Cust is a set of

customers, and FETS is a set of frequent event types.
Jfor each customer Cid in DBsort begin

Jfor each event type E in ETS begin
if E is in ETS(Cid), count(E)++;

end
end
Jfor each event type E in ETS begin

if (count(E)/|Cust|)>minsup, add E to FETS;
end
delete all event types not in FETS from DBsort;
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Step2: Computing a set of event sequences, SS(Cust)

Jor each customer Cid in DBsort begin
Jor each event type E in EType(Cid) begin
compute an event sequence ESeq(Cid, E)
for Cid and E;
add ESeq(Cid, E) to SS(Cid); // SS(Cid) =
{ESeq(Cid, E) | E EFETS(Cid)}
end
add SS(Cid) to SS(Cust); //SS(Cust) = SS(Cid1) U
SS(Cid2)U... USS(Cidn)
end

Step3: Computing a set of continuous event sequences,
CSS(Cust)

Jfor each event sequence S in SS(Cust) begin
let Sbe <(Cidy E, t1) (CidyE, t2).. (Cia,E,ts)
(Cig, E, tis1) .(Cig, E, t0)>
fortwo adjacent events (Ciq, E, t1)
and (Ciqg, E, tis1) of S begin
if (tia-ti)> Tgap begin
split S into S\=<(Cig,E,t: (Cit, E, 12)
...(CyE t;)> and
$=<(Cia,Eti+1) .. (Cia, E t:)>;
add S, into CSS(Cus?);
end
S =S;;
end
end

Step4: Summarizing each event sequence
in CSS(Cust) into an interval-based event

for each continuous event sequence S
in CSS(Cust) begin
let S be <(Cid,E t1) (Cid,E t;)-+ (Cid,E,ty)>;
summarize S into an interval-based event
IE=(Cid,E,[t,t.]);
add IE to DBiyerval-evis;

end

Step5: Computing a set of temporal interval
relations IR(Cust) from interval-based events

in DBinervalevs
for each customer Cid in DBinerval-cvis begin
Jor any two interval-based events
with Cid, x and y begin
if (x.ve <y.vs) ™ (¥.vs — x.ve)< Tinterval-gaps
add before(x,y) to TR(Cid),
if (x.vs <y.vs) " (x.ve <y.ve) " (y.vs < x.ve),
add overlap(x,y) to TR(Cid);
if (y.vs <x.vs) " (x.ve <y.ve),
add during(x,y) to TR(Cid);
end

end

compute IR(Cust) = U cigie cust IR(Cid;);

Step6: Computing a set of causal relations
CR(Cust) from IR(Cust)

Jor each customer Cid in TR(Cust) begin

Jor each temporal relation # in TR(Cid) begin
if tris before(x,y) ~ (y.vs-x.ve < Toefore),
add a causal relation x—y to CR(Cid);
if tr is overlap(x,y) ™ (y.VS-X.VS =Toverlap),
add a causal relation x—y to CR(Cid);
if tr is during(x,y)" (X.V$-y.VS = Tduring),
add a causal relation y—x to CR(Cid);
end
end
compute CR(Cust) =Ucigic cust CR(Cidy).
Step7: Computing a set of frequent causal relations

FCR(Cust) from CR(Cust);
Step8: Discovering frequent component graphs;
Step9: Computing the degree of the cause-and-effect

between events from frequent component

graphs according to Definition 6.

V. Experimental Results

From Experiments were carried out while varying
time-constraint parameters such as Teap, Thefores Toverlap> Tduring, and
MinSupport. The number of interval events, temporal interval
relations, and causal relations will be computed by varying the
parameters. The experiments are performed mainly for
analyzing: (1) the DFCR-FIR method, for discovering frequent
causal relations from frequent interval relations which have
been computed without time-constraint (Tgp)between the
adjacent same type events, (2) the DFCR-FIRc method, for
discovering frequent causal relations from frequent interval
relations which have been computed with the time-constraint
between the adjacent same type of events, and (3) the
DFCR-CRc method, for discovering frequent causal relations
from causal relations which have been computed from interval
relations with the time-constraints between the adjacent same
type of events.

The description of data set is shown as in Table 2. The data
set has been artificially generated. Each transaction in the data
set consists of three fields: transaction /D, transaction time, and

a set of events.
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Table 2. Description of the Data Set

Number of event types 100

Number of customers 1000

Number of transactions 7018
Maximum length of transactions 15

From the experiments, we analyze the change of the followings.
(1) Number of interval events for customers (#E)

(2) Number of interval relations for customers (#/R)

(3) Number of causal relations for customers (#CR)

Also, through the experiments, we will show the changes of
the number of interval relations for each interval relation (/R)
type. Five types of interval relations exist (/Rvcfore, [Roverlap
TRduring, IRduringx, and IRcquat). To find causal relations, only three
1R types (IRvctore, IRoverlaps IRauring) Will be considered. IRauringx 1S
a during(X,Y) where X.vs=Y.vs. Therefore, we cannot discern X
and Y as a cause event. Also, from equal(X,Y), we cannot

discern X and Y as a cause event.

Table 3. Descriptions for some abbreviations
a set of interval events computed without
time-gap (7gap)
between adjacent events in a sequence

IE constraint

of

considering

time-point-based events of the same type
s set of interval  events computed with
time-gap (7gap)
between adjacent events in a sequence

1IEc constraint

of

considering

time-point-based events of the same type

a set of temporal interval relations
discovered from /E

a set of temporal
discovered from /Ec

a set of frequent interval relations gotten
from IR

a set of frequent interval relations gotten
from IRc

a set of causal relations gotten from IRc

IR

interval relations

IRc

FIR

FIRc

CRc

a set of frequent causal relations discovered

from FIR
a set of frequent causal relations discovered

from FIRc
a set of frequent causal relations discovered

from CRc.

FCR

FCR-FIRc

FCR-CRc

To discover frequent causal relations, we can choose one of
three methods (DFCR-FIR, DFCR-FIRc or DFCR-CRc) as

follows. The notation “—” denotes computation flows.
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Method DFCR-FIR: IE —IR —FIR —FCR
Method DFCR-FIRc: IEc —IRc — FIRc —FCR-FIRc
Method DFCR-CRc: IEc —IRc — CRc —FCR-CRc

Constraintyg,, (Tgap<tgp) must be satisfied to split a sequence
of the same type of events into subsequences. If Ty, is infinite,
the sequence of events is transformed into one interval event.
This might not be reasonable because an event might
intermittently (rather than continuously) occur. The values of
parameters such as Thefore, Toverlap, aNd Tawing are needed to
discover a reasonable causal relation between two temporal
interval events. Their values are generally determined by
domain specialists.

While varying Tep, we analyze the number of causal
relations for two methods (DFCR-FIRc and DFCR-CRc). The
DFCR-FIR method is the special case of DFCR-FIRc (the case

Teap 1 infinite).

60000

50000

40000

30000

20000

10000

Number of interval events or relations

Tgap-1 Tgap-2 Tgap-3 Tgap-4 Tgap-3

Fig. 1. Number of interval events or interval
relations
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£
-2 25000 —_—
]
T / —IR
= 20000
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= —IRd
2 10000 A
o | RAuUringx
E som0 —_— IRequal
0 = —— —_ qua
2 :::::::==-—— =
0 F————— :
Tgap-1 Tgap-2 Tgap-3 Tgap-4 Tgap-5

Fig. 2. Number of interval relations for IR types

We show that the number of frequent causal relations
discovered by DFCR-CRc is more than that by DFCR-FIR or
DFCR-FIRc. In other words, the knowledge discovered by
DFCR-CRc is much richer than that discovered by DFCR-FIR
or DFCR-FIRc.
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In Fig. 1, we can see that the number of interval events is
decreased when tgap is increased. However, we found that the
number of temporal interval relations is increased while Tgap
increases. As the length of the tgap increases, the duration of
the interval events also increases. We found that there can be
more temporal interval relations between long interval events
and short interval events than those between only short interval
events. If long interval events do not clearly represent the
persistency of events, their temporal interval relations are also
not reasonable.

As shown in Fig. 2, when Ty, is increased, three types of
interval relations, including /Rovertap, [Rduring, and /Rauringx have
an effect on the increase of the number of temporal interval
relations. For example, long duration interval events can be
more closely related to short duration events by “during”,
“duringx”, or “overlap”. From Fig.1, we can see that the size of
IR is larger than that of /Rc, because IR is computed when T,
is infinite.

Fig. 3 shows that for all values of Tgp, FCR-CRc contains
significantly more information than FCR-FIR and FCR-FIRc.
FCR is a set of causal relations when Tgyp is infinite (°°). As a
result, DFCR-CRc discovers much more information from the
time-point data set.
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Fig. 3. Number of causal relations for varying Ttgap
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E thefore-1 | thefore-2 | thefore-3 | thefore-4 | thefore-5
=#=DFCR-FIRC 349 305 836 1286 1644
—8—DFCR-CRc 579 792 1124 1508 1803

Fig. 4. Number of causal relations discovered while
varying a parameter Teefore (for the following fixed

parameters of Tgap=3, Tinterval-gap=3, Tdun‘ng=1, Toverlap=1,
MinSupport=0.1)

To determine the interval relation types that have an effect on
the frequent causal relations, we inspect the change of the
number of frequent causal relations while varying the
time-constraints of Thefore, Toverlap, ANd Tauring. Only these three

constraints have an effect on causal relations.

toverlap

200

600 [ P————

400

200

Number of causal relations

Toverlap-1 | Toverlap-2 | Toverlap-3 | Toverlap-4 | Toverlap-5

=4=DFCR-FIRc 349 349 349 349 349
=#=DFCR-CRc 579 571 369 565 565

Fig. 5. Number of causal relations found while varying
a parameter Towerap (for the following fixed parameters
such as Tgap=3, Tinterval-gap=3, Tduring=1,Tbefore=1,
MinSupport=0.1)

tduring

200

600
400 42\%

v v v v
200

Number of causal relations

Tduring-1 | tduring-2 | tduring-3 | tduring-4 | tduring-5

=4+—=DFCR-FIRc 349 279 264 264 264
=#—=DFCR-CRc 579 471 408 361 323

Fig. 6. Number of causal relations discovered while
varying a parameter Tquing (for the following fixed
parameters such as Tgap=3, Tinterval-gap=3,

Tduing=1, Toefore=1, MinSupport=0.1)

Also, we compare only two methods, DFCR-CRc and
DFCR-FIRc, because DFCR-FIR is a special case of
DFCR-FIRc when Ty, is infinite. In Fig. 4, for the given
parameter values of Tgp(=3), Tdauing (1), Toverlap (=1), and
MinSupport(=0.1), we find the degree to which a parameter T
before Nas an effect on the number of causal relations. In Fig. 5,
for given parameter values of Tgp(=3), Tauring (=1), Toefore (=1),
and MinSupport(=0.1), we find the degree to which a parameter
Toverlap has an effect on the number of causal relations. In Fig. 6,

for given parameter values of Tgp (=3), Toverlap (=1), Toefore (=1),
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and MinSupport(=0.1), we find how a parameter Tauing has an
effect on the quality of causal relations. As shown in Fig. 4,
Fig. 5, and Fig. 6, for all parameter values, DFCR-CRc
discovers considerably more causal relations than DFCR-FIRc.
This is because different infrequent interval relations can be
transformed into the same causal relation. For example,
overlap(4,B) and before(4, B) produce the same causal relation
of A—B. Let #rel(X)Y) be the number of a relations rel(X,B).
Even though both temporal interval relations are infrequent, if
(#overlap(A,B) + #before(A,B) ) > MinSupportCount, the causal
relation 4—B is frequent.

As shown in Fig. 4, when Tyerore increases, the number of
causal relations increases in DFCR-CRc and DFCR-FIRc
because Constraintycror. becomes stronger when the value of ©
before decreases. For example, for two interval-based events,
(4,[8,10]) and (B,[12,14]), if Teefore =1, there is no temporal
interval relation, but if Tiefore=2, there is a temporal interval
relation before(4,B) and a causal relation A—B. As shown in
Fig. 5, for Toverlap, When its value is increasing, the number of
causal relations is almost the same, but the number of causal
relations for a high value is always less than that of its low
value. This is because Constraintoedp becomes stronger when
the value of Ttoverlap increases. For example, for two
interval-based events (4, [10,14]) and (B, [12,15]), if Toverlap=1
or Toverlap=2, there is a temporal interval relation overlap(4, B)
and a causal relation 4—B, but if Toverlap=3, there is no
temporal interval relation because the condition of
(startTime(B) - startTime(A))> 2 must be satisfied. Fig. 6 shows
that for Tauing, When its value increases, the number of causal
relations decreases. This is also because Constraintguring
becomes stronger when the value of tduring becomes larger.
For example, for two interval-based events (4, [10,16]), and (B,
[12,15]), if Tduing=l Or Tdauring=2, @ temporal interval relation
during(B, A) and a causal relation A—8 occur, but if Tdauring=3,
no temporal interval relation exists because the condition of
(startTime(B) - startTime(A))> 2 is not satisfied.

From the result of experiments (see Fig. 4, 5, and 6), we can
find that the DFCR-CRc method discovers much more causal
relations than DFCR-FIRc. This is because of the two following
facts.

Fact 1: The number of different causal relations is less than or

equal to the number of different interval relations.
Fact 2: The number of frequent causal relations discovered by

DFCR-CRc is greater than or equal to the number of causal
relations discovered by DFCR-FIRc.
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Assume that #P denotes the number of relations P. For
example, #before(4, B) denotes the number of temporal interval
relations before(A, B). Fact 1 exists because several different
temporal interval relations can be mapped into one causal
relation. For example, two temporal interval relations before(4,
B) and overlap(A, B) are both represented by one causal relation
A—B. In DFIR-CRc, even though before(A, B) and overlap(4,
B) are both infrequent interval relations, #(4—B) can be
frequent because (#(4—B)vefore + #(A—B)overlap) Can be greater
than or equal to the given MinSupportCount. Therefore, Fact 2
is always true.

It is better to discover frequent causal relations from temporal
interval relations that could be infrequent than to discover
frequent causal relations from frequent temporal interval
relations. That is, DFCR-CRc can find frequent causal relations
from temporal interval relations which might be infrequent.
Therefore, the frequent causal relations discovered by
DFIR-CRc can represent more important knowledge than those
discovered by DFIR-FIRc. Parameters Tocfore, Toverlap, aNdTauring
are properly adjusted by domain experts. For example, a patient
can have symptom B after symptom A4 disappears, and another
patient might have symptom B during the lifetime of symptom
A. In this case, it is reasonable to infer that 4 is a cause
symptom for B. Our proposed DFCR-CRc method discovers
more valuable knowledge than DFCR-FIR or DFCR-FIRc.

Vl. Conclusion and Future Works

We proposed a method that discovers temporal interval
relations and causal relations from time-point-based events. To
discover qualitative information from the event set, we found
that a sequence of persistent events of the same type needs to be
summarized into one interval event. It may be difficult to
discover the temporal relations directly from the
time-point-based events. Thus, we summarized the sequences
of time-point-based events of the same type into interval-based
events. From the interval-based events, temporal interval
relations and causal relations were discovered. From the
temporal interval relations, we can find effective causal
relations if some parameters such as Tocfore, Toverlaps Tduring and
MinSupport are properly selected by domain experts. We
(DFCR-FIR, DFCR-FIRc, and

DFCR-CRc) used for discovering causal relations from

showed three methods

temporal interval relations. Through the experiments, we found
that the DFCR-CRc method discovers more effective and
qualitative information than DFCR-FIRc and DFCR-FIR. We

also proposed a new evaluation measurement that can be used
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for ordering the major causes of an event.

In future work, based on the history data of patients, we
intend to develop a method to predict time-points or time
intervals at which an event is likely to occur. It is also important

to discover temporal and causal relations among events
(symptoms).
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