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[요    약]

시간 속성을 갖는 데이터집합에서 유용한 정보를 탐사하는 방법으로 빈발 이벤트시퀀스는 이벤트들 사이의 인과관계를 분명

하게 표현하지 못한다. 동일한 타입의 이벤트시퀀스가 인터벌이벤트로 요약이 된다면 인터벌 이벤트들로부터 인터벌들의 시간

관계를 탐사할 수 있다. 이 논문에서는 시간속성을 갖는 이벤트들로부터 인터벌 시간관계에 근거하여 이벤트들의 인과관계를 마

이닝하는 새로운 방법을 제안한다. 동일한 타입의 이벤트에 대한 인터벌이벤트를  독립적인 다수의 인터벌이벤트들로 나누어 보

다 많은 인터벌이벤트들의 시간관계를 찾을 수 있도록 한다. 빈발 인터벌 시간관계로부터 빈발 인과관계를 찾는 것(FCR-FIR, 

DFCR-FIRc)보다 인터벌 시간관계에서 탐사한 인과관계로부터 빈발 인과관계를 찾는 것(DFCR-CRc)이 더 많은 유용한 정보를 찾

을 수 있다. 실험을 통하여 DFCR-CRc이 보다 많은 유용지식을 탐사한다는 것을 입증하였다. 

[Abstract]

Most of these are used to discover frequent event sequences from time-point-based events. However, these frequent event 

sequences do not clearly represent the causal relationship among events. If a sequence of events of the same type is summarized 

into one interval-based event, we can discover temporal interval relations from interval-based events. From these temporal interval 

relations, causal relations among interval-based events can be easily found. In this paper, we proposed a new method that mines 

causal relations from time-point-based events. Experiments were performed in this study to evaluate three methods (DFCR-FIR, 

DFCR-FIRc, and DFCR-CRc) to discover the causal relations and temporal interval relations from time-point-based events. 

DFCR-FIR and DFCR-FIRc discover frequent causal relations from frequent temporal interval relations. DFCR-CRc discovers 

frequent causal relations from the causal relations. We found that DFCR-CRc provides more useful and effective knowledge than 

two methods DFCR-FIR and DFCR-FIRc.

색인어 : 데이터마이닝, 인과관계, 시간관계, 시간속성이벤트

Key word : data mining, causal relation, temporal relation, time-point-based event
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Ⅰ. Introduction

Data mining is a technology used to analyze a large amount of 

accumulated data and to extract valuable knowledge from the 

data for decision-making. It can be widely used in areas such as 

market analysis, decision support, fraud detection, customer 

classification, medical care, and so on [1], [2], [3], [4], [25]. 

Recently, many works have focused on the temporal data 

mining for discovering temporal knowledge from a temporal 

data set. The knowledge consists of sequential patterns [5], 

periodic patterns [6], frequent episodes [3], frequent temporal 

interval relations [7], similarity [8], and causality of events [9], 

[10], [11], [12], [13], [14], [15].

Temporal data sets can be classified into either a time 

point-based data set or an interval-based data set. When a 

time-point-based event data from stream data sources is 

gathered, its interval or duration to represent its continuity is 

generally not known. Thus, an interval-based data set is 

typically obtained from a time-point-based data set. An 

interval-based event holds summarized information of 

time-point-based events. From the temporal relations of 

interval-based events, called “temporal interval relations”, more 

important knowledge can be discovered such as the causality of 

events.

Also, a temporal data set can be classified into four categories 

according to the number of streams and the number of 

concurrent events as follows:

1. Single Stream and Single Event (SSSM) [3]; SSSM is a set of 

events from single stream, where one time slot contains only 

one event. 

2. Single Stream and Multiple Events (SSME) [4], [6], [8]; 

SSME is a set of events from a single stream, where one time 

slot contains multiple events.

3. Multiple Streams and Single Events (MSSE); MSSE is a set 

of events from multiple streams, where one time slot contains 

only one event.

4. Multiple Streams and Multiple Events (MSME) [7], [9], [16]; 

MSME is a set of events from multiple streams, where one 

time slot contains multiple events.

The sequential pattern mining problem was introduced by 

Agrawal and Srikant [17]. Sequential pattern mining is used to 

find all frequent subsequences from a set of sequences. From 

frequent patterns, we can find the order of events. This order can 

be used in a business strategy. Examples of interval-based event 

data include library lending, stock fluctuation, patient diseases, 

meteorology data, etc. Wu and Chen [7] defined a new type of 

non-ambiguous temporal pattern for interval-based event data. 

They found that patterns discovered by the Allen-based 

approach have ambiguity problems. To solve the ambiguity 

problems, he proposed the TPrefixSpan algorithm.

In this paper, we propose a new temporal data mining 

method that discovers temporal interval relations between 

interval-based events which are computed from a 

time-point-based data set. Also, we will discuss the casual 

relations among interval-based events. The objective of our 

research is to develop an algorithm to process big-data from a 

selected hospital. Each department in the hospital treats many 

patients and produces medical records for the patients. Each 

medical record has several events (symptoms or the result of 

check-ups). Each patient is a stream source and one medical 

record contains many events. Therefore, we selected the MSME 

data set. 

The basic concept of our method is summarized as follows, 

in which temporal interval relations and causal relations are 

discovered from a MSME data set:

1. Compute frequent event types from MSME data set

2. For each stream and each frequent event type, compute 

continuous event sequences from MSME data set

3. Summarize each continuous event sequence into one 

interval-based event

4. Discover temporal interval relations from interval-based 

events

5. Discover causal relations from temporal interval relations

6. Discover frequent causal relations from a set of causal 

relations

7. Compute the net effect of events on other events from 

component graphs for frequent causal relations.

Generally, patient medical records are stored in a 

hospital database in the timestamp order. From the 

hospital database, we aim to discover rules (or 

knowledge) to properly treat patients. Our method can be 

easily applied to the medical field for discovering useful 

and effective knowledge (frequent causal relations).

The remainder of the paper is organized as follows. In 

Chapter Ⅱ, we discuss the related works. In Chapter Ⅲ, the 

terminologies and definitions related to temporal relations and 

causal relations are described. In Chapter Ⅳ, our algorithm for 

mining temporal interval relations among interval-based events 

and their causal relations is described. In Chapter Ⅴ, the 

proposed method is analyzed through the experiments. In 

Chapter Ⅵ, the conclusion and future works are discussed.

Ⅱ. Related Works

Temporal data mining discovers useful knowledge from a 

temporal data set. Temporal data mining methods and their 
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mining results can contain frequent event sequences [4], [16], 

frequent episodes [3], periodic patterns [6], frequent temporal 

interval relations [7], causality of events [9], [10], [11], [12], 

[13], [14], [15], or similarity [8]. Several variations of the 

Apriori algorithm have been proposed to improve basic 

sequential pattern mining algorithms such as GSP [17] and 

SPIRIT [18]. GSP is a technique used to discover generalized 

sequential patterns that incorporate user-specified time 

constraints. SPIRIT is a technique used for discovering all 

frequent sequences that satisfy a user-defined regular 

expression constraint. An episode has a collection of events 

with a partial order. Mannila, et al. [19] introduced the 

framework of frequent episodes discovery in event sequences. 

Laxman et al. [3] introduced generalized episodes. A 

generalized episode incorporates event duration information 

explicitly with the episode structure. Each event in the episode 

has a duration which is previously determined by the domain 

specialists. Frequent generalized episodes assist the diagnosis of 

root causes of persistent fault situations. Periodic patterns are 

recurring patterns that have temporal regularities in a 

time-series data set. Huang et al. [6] proposed a more general 

model of asynchronous periodic patterns from a sequence of 

event sets where a time slot can contain multiple events.

More recently, studies on mining useful patterns from 

temporal interval data have been initiated [20], [21], [22]. 

However, since the temporal relation rule discovery from 

interval data is very complicated, no noticeable progress has 

been made thus far. Also, summarizing a sequence of events 

into one interval-based event is unreasonable because some 

events in the sequence cannot be continuous or persistent. The 

sequence of events needs to be split into continuous 

subsequences and each subsequence needs to be summarized 

into one interval-based event. Periodic patterns exist in many 

types of data. For example, tides, planet trajectories, daily 

traffic patterns, and power consumptions present certain 

periodic patterns. Many emerging applications have been made, 

including stock market price movement, earthquake prediction, 

telecommunication network fault analysis, repeat detection in 

DNA sequences, and occurrence of recurrent illnesses. In [9], 

[14], [15], a method was proposed to detect adverse drug 

reactions. This is a domain-driven data mining method.

In [22], a method for finding the temporal interval relation 

rules from a temporal data set was proposed. The method can 

extract temporal interval relation rules from a temporal interval 

data set by using Allen's theory. However, the method does not 

measure the extent to which one event affects another event. If 

we can determine the degree of influence of each event, we can 

find a major source event for a specific event. If we have 

knowledge of the time-gap between interval-based events, we 

can also find very useful knowledge that can predict the 

occurrence time of future events. In [23], a method of mining 

positive and negative association rules was proposed. Positive 

association rules have a positive effect and negative association 

rules have a negative effect on association rules. However, 

there is a limit to analyzing the causality among events since 

the method computes an influence using association rules based 

only on the support of events and the confidence of association 

rules. Thus, it is necessary to develop a new measurement to 

represent the causality among events. Terminologies and 

definitions related to temporal interval relations and causal 

relations will be given in this section. Also, the way in which 

causal relations are discovered from temporal interval relations 

will be discussed.  

Ⅲ. Temporal Interval Relation and 

Causal Relations

Terminologies and definitions related to temporal interval 

relations and causal relations will be given in this section. Also, 

the way in which causal relations are discovered from temporal 

interval relations will be discussed.

3-1 Terminologies and Definitions

A temporal data set DB is a database of time-stamped 

transactions. In this paper, a patient and a customer will be 

interchangeably used as an issuer of a transaction. In general, 

for one medical check-up of a patient, one medical record will 

be produced. The medical record is a transaction. A patient can 

be considered as a source of a stream of data (or transactions). 

Let TS and ETS be a set of primitive time-points and a set of 

event types, respectively. An event e is defined by triple 

attributes such as e = (Cid, E, t), where Cid is a customer who 

issues an event e, E(E∈ETS) is an event type, and t(t∈TS) is a 

time-point at which an event e has occurred. Examples of 

events include patient symptoms, the failures of products, 

environmental changes, visited web pages, etc. A transaction is 

a set of events which have occurred at a time-point. Each 

transaction has attributes such as a customer Cid, a 

transaction-time t, and a set of events ES. A patient can 

sequentially issue several transactions. For example, a patient 

can periodically take a medical check-up. Each medical 

check-up is represented by a transaction. One medical check-up 

can show multiple symptoms. Each symptom is an event in a 

transaction. Each customer can issue only one transaction at 
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one time-point. Thus, all events in a transaction have the same 

timestamp. DB is a set of transactions which are expressed by a 

form (Cid, ES, t), where ES is a set of events contained in a 

transaction which is issued at a time-point t by a customer Cid. 

Transactions contained in DB are ordered by Cid and t. Let a 

sequence of transactions issued by a customer Cid be 

SeqTrans(Cid) =< T1, T2, … , Tn >. An event sequence consists 

of the same type of events selected from SeqTrans(Cid). A 

sequence of events for a customer Cid and event type E is 

defined, as in Definition 1 below. In this paper, an event 

sequence is a sequence of the same type of events.

    Temporal relations between time-point-based events cannot 

easily represent the causality between events since events 

generally persist for some duration. To capture the overall 

temporal relation among events, we will focus on the sequences 

of events.

Definition 1. (An event sequence for a customer Cid and 

eventtype E) An event sequence for a customer Cid and event 

type E, ESeq(Cid, E), is defined by a sequence <e1, e2, …, 

em>, where ei=(Cid, E, ti), ti<ti+i for each i = 1, 2, … , m-1. e1

∈T1∈T(Cid), e2∈T2∈T(Cid), …, em∈Tm∈T(Cid), and 

Etype(e1)=Etype(e2)=, …, =Etype(em)=E. Etype(e) denotes the 

type of event e. T(Cid) is a set of transactions issued by a 

customer Cid. Also, a set of event sequences for a customer Cid

is defined by SS(Cid) ={ESeq(Cid, E)|E∈ETS(Cid)}. ETS(Cid) 

is a set of event types issued by a customer Cid. A set of event 

sequences is defined as follows. DBseq=∪Cid∈ Cust SS(Cid), 

where Cust is a set of customers.

From DB, we can obtain a database of event sequences, 

DBseq, defined by Definition1. Let a set of customers be 

Cust={Cid1, Cid2, …, Cidn}. DBseq is represented by SS(Cust) 

= SS(Cid1)∪SS(Cid2)∪…∪SS(Cidn).

In this paper, we will consider only the event sequences of 

the same type of events of each customer. If the events in the 

sequence persist, it is reasonable to summarize each event 

sequence into one interval-based event defined by Definition 2.

When an event E is included in SS(Cid), we state that a 

customer Cid supports E. The support count of E is denoted by 

SupCount(E) and it is the number of customers supporting E in 

DB. Sup(E) is represented by an expression SupCount(E)/Ncust. 

Ncust is the number of customers in DB. If Sup(E) ≥MinSup

(the minimum support chosen by a user), E is a frequent event. 

MinSup is the ratio of the support count for the total number of 

customers. MinSup is determined by applications. If an 

application requires high MinSup, highly frequent events are 

considered for mining temporal relations. As the MinSup

increases, the number of general temporal relations we can 

obtain from a data set also increases.

Definition 2. (An interval-based event) An interval-based event, 

ie, is denoted as ie = (Cid, E, [vs, ve]), where vs and ve

represent the start time and end time of an event E, respectively. 

For an interval-based event ie, its start and end time are 

represented as ie.vs and ie.ve, respectively. A set of 

interval-based events for a customer Cid is denoted as IES(Cid).

An event sequence can be converted into one interval-based 

event if its event is continuous or persistent. To meaningfully 

summarize an event sequence into an interval-based event, the 

time-gap (Tgap) between adjacent events in the event sequence 

must be less than a given time-threshold value τgap. The 

time-threshold value τgap can differ according to the application 

areas. We can define ConstraintTgap as the expression, Tgap < τ

gap. If ConstraintTgap is not satisfied, we can consider that the 

event is not continuous in the time-gap. For example, if there 

are two symptoms, a cold (due to influenza) on the 1st of 

January and a cold on the 1st
of May, the first cold would not 

generally persist up to the 1st of May.

    For each sequence in SS(Cust), if it is continuous, it can be 

summarized into an interval-based event. An interval-based 

event means that the event occurs continuously in its time 

interval. A continuous event sequence ESeq(Cid, E) can be 

summarized into one interval-based event (Cid, E, [vs, ve]). 

(Cid, E, [vs, ve]) means that an event E has occurred 

continuously in the temporal interval [vs, ve]. 

    Summarizing a discontinuous event sequence into one 

interval-based event is not reasonable. For example, if the 

time-gap between adjacent events in an event sequence is larger 

than a given time-threshold value τgap, we can assume that the 

two events around the time-gap are discontinuous within the 

time-gap. Thus, it is reasonable to divide the discontinuous 

sequence into continuous subsequences and summarize each 

subsequence into one interval-based event. For example, let an 

event sequence be ES(Cid, E) =< (Cid, E, 1) (Cid, E, 3) (Cid, E, 

4) (Cid, E, 8) (Cid, E, 10)>. If a given time-threshold τgap is 3, 

the sequence is split into two subsequences < (E, 1)(E, 3)(E, 4) 

> and < (E, 8)(E, 10) >. These are then summarized into (Cid, 

E, [1, 4]) and (Cid, E, [8, 10]), respectively. 

3-2 Temporal Interval Relations 

For two interval-based events, x and y, they have a binary 

temporal interval relation, Ф(x, y), where Ф denotes a binary 

temporal interval relation between two interval-based events x 
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and y. The binary temporal interval relations are based on the 

temporal relation operators proposed by Allen [24]. To discover 

causal relations, we will consider only three operators of 

Allen’s temporal relation operators as in Definition 3 below.

Definition 3. (Temporal interval relation) A temporal interval 

relation Ф(x, y) is defined as follows. Ф is an operator in a set 

of operators such as before, during, and overlap. 

• before(x, y) : (x.ve ≤ y.vs) 

• overlap(x, y) : (x.vs < y.vs) ^ (x.ve < y.ve) ^ (y.vs < x.ve)

• during(x, y) : (y.vs ≤ x.vs) ^ (x.ve ≤ y.ve)

The following operators such as ‘equals’ and ‘meets’ of 

Allen’s temporal relation operators can be represented by 

‘during’ and ‘before’, respectively.

• equals(x, y) : (x.vs = y.vs) ^ (x.ve = y.ve)

•meets(x, y) : x.ve = y.vs

We can assume that equals(x,y) is a special case of during(x,y) 

and meets(x,y) is a special case of before(x,y). However, from 

equals(x,y), we cannot determine the cause and effect between 

them because their start-times are identical.

3-3 Causal Relations

Knowledge of the causal relations of events is very valuable for 

predicting future events. We will define causal relations 

between interval-based events as shown in Definition 4.

Definition 4. (Causal relation between interval-based events x

and y) A causal relation occurs between x and y if one of the 

following conditions is satisfied.

• Condition 1: before(x,y) ^ Constraintbefore, where 

Constraintbefore is (y.vs-x.ve≤τbefore)

• Condition 2: overlap(x,y) ^ Constraintoverlap, where 

Constraintoverlap is (y.vs-x.vs≥τoverlap)

• Condition 3: during(x,y) ^ Constraintduring, where 

Constraintduring is (x.vs-y.vs≥τduring)

A causal relation between interval-based events x and y is 

denoted by the notation “x→y”. τbefore, τoverlap, and τduring are 

time-threshold values determined by domain experts. They are 

required for temporal relations to become effective casual 

relations.

The constraints in Definition 4 are determined by domain 

experts. “before(x,y)^(y.vs-x.ve)≤τbefore” indicates that an event x

precedes another event y while satisfying a given 

Constraintbefore. If Constraintbefore is not satisfied, then a 

sufficient time gap occurs in which an event x does not have an 

effect on event y. “overlap(x,y)^(y.vs-x.vs)≥τoverlap” shows that 

after an event x occurred, an event y has occurred after at least a 

given time-threshold value τoverlap has elapsed. In addition, y 

continues until after x has finished. Thus, we can assume that x

is the cause of y. “during(x, y)^(x.vs-y.vs)≥τduring” indicates that 

an event x occurs and ends in the lifetime of event y and event x

must occur after at least the time threshold value τduring from the 

start of event y. Also, we can assume that y is the cause of x. If 

Constraintoverlap and Constraintduring are satisfied, enough time 

must have elapsed for the “cause-and-effect” relation to come 

into being. Time-threshold values τbefore,τoverlap ,and τduring can 

differ according to the applications. 

Ⅳ.  Algorithm for Mining Temporal 

Interval Relations

In this section, we introduce an algorithm for mining 

temporal interval relations among interval-based events and 

their causal relations. It consists of the summarization of event 

sequences into interval-based events, as well as the discovery of 

temporal interval relations among interval-based events, and 

their causal relations. From causal relations, the degree of the 

cause-and-effect between interval-based events will be 

computed. 

4-1 Algorithm

DB is a database of transactions. Each transaction 

consists of a customer Cid, a transaction-time t, and a set 

of events. A customer can issue one transaction at one 

time-point. That is, all of the timestamps of transactions 

issued from a customer differ. All events in a transaction 

have the same timestamp. Our algorithm can be 

summarized as shown in Table 1. In Step 3, a sequence of 

time-point-based events was split into subsequences if the 

sequence is not continuous. If a discontinuous sequence of 

the same type of events is summarized into one interval 

event, the interval event might not reasonably represent 

the actual interaction of events, as in Example 1. In Step 5, 

τinterval-gap is needed to remove meaningless temporal 

interval relations. τinterval-gap is greater than τgap.

Example 1. Suppose that event sequences occur such as ES(Cid, 

A) =< (Cid, A, 1)(Cid, A, 3)(Cid, A, 4) (Cid, A, 10)(Cid, A, 12) 

>, ES(Cid, B) =< (Cid, B, 3)(Cid, B, 6) >, and ES(Cid, C) =< 
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(Cid, C, 7)(Cid, C, 9) >.

Case 1: Tgap is not considered.

Three interval events <Cid, A, [1,12]>, <Cid, B, [3,6]>, and 

<Cid, C, [7,9]> are discovered. From these three interval 

events, the causal relations, A→B and A→C, are discovered. 

Case 2: Tgap is considered and τgap is 3.

<Cid, A, [1,12]> is split into two interval relations, <Cid, A, 

[1,4]> and <Cid, A, [10,12]>. In this case, causal relations, A→

B and C→A, are discovered.

Case 2 is more reasonable than Case 1 because an event A does 

not persist in an interval [5,9] (Tgap> τgap). Case 1 and Case 2 

have different meanings because their causal relations differ.

    All causal relations among events can be expressed by a 

directed graph, called CR-Graph. CR-Graph is defined in 

Definition 5. In CR-Graph, a node represents an interval-based 

event and an edge denotes a causal relation. Also, each edge x

→y has a label Cust(x→y), which is a set of customers who 

support the causal relation.

Definition 5. (Causal Relation Graph: CR-Graph) CR-Graph is 

a directed graph. Each node represents an interval-based event. 

Each edge represents the causal relation between two 

interval-based events. The label on an edge denotes a set of 

customers who support the causal relation.

    We can find frequent component graphs for causal relations 

from CR-Graph by examining the labels on the edges of 

CR-Graph. Assume that a component graph (A→C←B) in 

CR-Graph is frequent and its support count is 50. If Cust(A→C) 

and Cust(B→C) have 100 customers and 50 customers, 

respectively, and the support counts of interval-based events A 

and B are 200 and 50, respectively, we can infer that event B is 

the essential cause of C rather than event A because C always 

occurs when B occurs. 

    Discovering the cause-and-effect among events from causal 

relations considering only their supports has some 

shortcomings. Assume that the support of causal relation A→B

and the support of event A are 0.3 and 0.3, respectively. If the 

confidence is used as the measure of causality, we can only 

infer that event A has an absolute effect on event B since the 

confidence of causal relation A→B is 1. If the support of B is 

0.7, B can be due to other causes. Thus, we need a new 

evaluation measurement to show the rate of the effect of A on 

B. Let A→B be a causal relation in CR-Graph. We will define a 

new measurement NetEff(A→B) which computes the rate of the 

net effect of A on B. The measurement NetEff(A→B) is defined 

in Definition 6.

Definition 6. Net effect of X on B, NetEff(X→B), is defined as 

follows. 

Part of Expression 1 denotes the rate that an event B can 

occur when an event X occurs. Part of Expression 1 

denotes the portion of B affected by X. Eff(X→B) is represented 

by an average of two parts. Expression 2 is the maximum effect 

of other events on B. The net effect of X on B is represented by 

Eff(X→B) - max{Eff(Y→B)| Y→B∈FCR∧X≠Y}. By using 

NetEff, we can order the net effects of interval-based events in a 

component graph of CR-Graph. The ordered NetEffs of causal 

relations in a component graph can be used to discover the 

major source events for a target event.

    Our algorithm (see Table 1) discovers a set of frequent causal 

relations from a set of temporal interval relations. We call our 

algorithm DFCR-CRc (Discovering Frequent Causal Relations 

from Causal Relations which can be from infrequent temporal 

interval relations). We can consider another algorithm to 

discover causal relations from only frequent temporal relations, 

called DFCR-FIRc (Discovering Causal Relations from 

Frequent Temporal Interval Relations). DFCR-CRc discovers 

more frequent causal relations than DFCR-FIRc because 

different temporal interval relations (which can be infrequent) 

can be transformed into the same causal relation.

Table 1. Algorithm (DFCR-CRc) to discover frequent 

causal relations from causal relations

Input: a set of time-point-based events

Output: frequent causal relations

Step1: Computing a set of frequent event types.

Let DBsort be a set of transactions sorted according to 

customer identifiers and their timestamps. Count(E) is 

a support count for an event E, Cust is a set of 

customers, and FETS is a set of frequent event types.

for each customer Cid in DBsort  begin

      for each event type E in ETS begin

            if E is in ETS(Cid), count(E)++;

     end

end

for each event type E in ETS begin

      if (count(E)/|Cust|)>minsup, add E to FETS;

end

delete all event types not in FETS from DBsort;
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Step2: Computing a set of event sequences, SS(Cust)

for each customer Cid in DBsort begin

      for each event type E in EType(Cid) begin

            compute an event sequence ESeq(Cid, E)

                           for Cid and E;

            add ESeq(Cid, E) to SS(Cid); // SS(Cid) = 

                                   {ESeq(Cid, E) | E ∈FETS(Cid)}

      end

      add SS(Cid) to SS(Cust); //SS(Cust) = SS(Cid1)∪

                                               SS(Cid2)∪...∪SS(Cidn)

end

Step3: Computing a set of continuous event sequences, 

           CSS(Cust)

for each event sequence S in SS(Cust) begin

      let S be <(Cid,E,t1) (Cid,E,t2)… (Cid,E,ti)

                 (Cid,E,ti+1) …(Cid,E,tn)>

     for two adjacent events (Cid,E,ti)

         and (Cid,E,ti+1) of S begin

     if (ti+1−ti)> τgap begin

        split S into S1=<(Cid,E,t1)(Cid,E,t2)

                                       … (Cid,E,ti)> and 

                                   S2=<(Cid,E,ti+1) …(Cid,E,tn)>;

                add S1 into CSS(Cust);

           end

     S =S2;

  end

end

Step4: Summarizing each event sequence 

           in CSS(Cust) into an interval-based event

for each continuous event sequence S

                                              in CSS(Cust) begin

   let S be <(Cid,E,t1) (Cid,E,t2)… (Cid,E,tn)>;

   summarize S into an interval-based event

                                               IE=(Cid,E,[t1,tn]);

   add IE to DBinterval-evts;

end

Step5: Computing a set of temporal interval 

          relations IR(Cust) from interval-based events

in DBinterval-evts

for each customer Cid in DBinterval-evts begin

   for any two interval-based events 

               with Cid, x and y begin

      if (x.ve ≤ y.vs) ^ (y.vs − x.ve)< τinterval-gap, 

              add before(x,y) to TR(Cid);

       if (x.vs < y.vs) ^ (x.ve < y.ve) ^ (y.vs < x.ve), 

             add overlap(x,y) to TR(Cid);

     if (y.vs ≤ x.vs) ^ (x.ve ≤ y.ve),

          add during(x,y) to TR(Cid);

    end

end

compute IR(Cust) =∪Cidi∈Cust IR(Cidi);

Step6: Computing a set of causal relations 

            CR(Cust) from IR(Cust)

for each customer Cid in TR(Cust) begin

  for each temporal relation tr in TR(Cid) begin

       if tr is before(x,y) ^ (y.vs-x.ve   ≤τbefore), 

           add a causal relation x→y to CR(Cid);

       if tr is overlap(x,y) ^ (y.vs-x.vs≥τoverlap), 

           add a causal relation x→y to CR(Cid);

       if tr is during(x,y)^ (x.vs-y.vs ≥τduring),

          add a causal relation y→x to CR(Cid);

    end

end

compute CR(Cust) =∪Cidi∈Cust CR(Cidi).

Step7: Computing a set of frequent causal relations 

FCR(Cust) from CR(Cust);

Step8: Discovering frequent component graphs;

Step9: Computing the degree of the cause-and-effect 

between events from frequent component 

graphs according to Definition 6.

Ⅴ. Experimental Results

From Experiments were carried out while varying 

time-constraint parameters such as τgap, τbefore, τoverlap, τduring, and 

MinSupport. The number of interval events, temporal interval 

relations, and causal relations will be computed by varying the 

parameters. The experiments are performed mainly for 

analyzing: (1) the DFCR-FIR method, for discovering frequent 

causal relations from frequent interval relations which have 

been computed without time-constraint (τgap)between the 

adjacent same type events, (2) the DFCR-FIRc method, for 

discovering frequent causal relations from frequent interval 

relations which have been computed with the time-constraint 

between the adjacent same type of events, and (3) the 

DFCR-CRc method, for discovering frequent causal relations 

from causal relations which have been computed from interval 

relations with the time-constraints between the adjacent same 

type of events.

The description of data set is shown as in Table 2. The data 

set has been artificially generated. Each transaction in the data 

set consists of three fields: transaction ID, transaction time, and 

a set of events. 
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Table 2. Description of the Data Set

  Number of event types 100

  Number of customers 1000

  Number of transactions 7018

  Maximum length of transactions 15

Fig. 1. Number of interval events or interval

       relations

Table 3. Descriptions for some abbreviations

  

IE

a set of interval   events computed without 

considering time-gap (Tgap) constraint 

between adjacent events in a sequence   of 

time-point-based events of the same type

  

IEc

s set of interval   events computed with 

considering time-gap (Tgap) constraint 

between adjacent events in a sequence   of 

time-point-based events of the same type 

  

IR

a set of temporal interval relations 

discovered from IE

  

IRc

a set of temporal interval relations 

discovered from IEc

  

FIR

a set of frequent interval relations gotten 

from IR

  

FIRc

a set of frequent interval relations gotten 

from IRc

  

CRc

a set of causal  relations gotten from IRc

  

FCR

a set of frequent causal relations discovered 

from FIR

  

FCR-FIRc

a set of frequent  causal relations discovered 

from FIRc

  

FCR-CRc

a set of frequent causal relations discovered 

from CRc.

Fig. 2. Number of interval relations for IR types

From the experiments, we analyze the change of the followings.

(1) Number of interval events for customers (#IE)

(2) Number of interval relations for customers (#IR)

(3) Number of causal relations for customers (#CR)

    Also, through the experiments, we will show the changes of 

the number of interval relations for each interval relation (IR) 

type. Five types of interval relations exist (IRbefore, IRoverlap, 

IRduring, IRduringx, and IRequal). To find causal relations, only three 

IR types (IRbefore, IRoverlap, IRduring) will be considered. IRduringx is 

a during(X,Y) where X.vs=Y.vs. Therefore, we cannot discern X 

and Y as a cause event. Also, from equal(X,Y), we cannot 

discern X and Y as a cause event.

To discover frequent causal relations, we can choose one of 

three methods (DFCR-FIR, DFCR-FIRc or DFCR-CRc) as 

follows. The notation “→” denotes computation flows. 

Method DFCR-FIR:  IE →IR →FIR →FCR

Method DFCR-FIRc:  IEc →IRc →FIRc →FCR-FIRc

Method DFCR-CRc:  IEc → IRc →CRc →FCR-CRc

ConstraintTgap (Tgap<τgap) must be satisfied to split a sequence 

of the same type of events into subsequences. If τgap is infinite, 

the sequence of events is transformed into one interval event. 

This might not be reasonable because an event might 

intermittently (rather than continuously) occur. The values of 

parameters such as τbefore,τoverlap, and τduring are needed to 

discover a reasonable causal relation between two temporal 

interval events. Their values are generally determined by 

domain specialists.

     While varying τgap, we analyze the number of causal 

relations for two methods (DFCR-FIRc and DFCR-CRc). The 

DFCR-FIR method is the special case of DFCR-FIRc (the case 

τgap is infinite).

We show that the number of frequent causal relations 

discovered by DFCR-CRc is more than that by DFCR-FIR or 

DFCR-FIRc. In other words, the knowledge discovered by 

DFCR-CRc is much richer than that discovered by DFCR-FIR

or DFCR-FIRc.
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Fig. 3. Number of causal relations for varying τgap

Fig. 4. Number of causal relations discovered while   

varying a parameter τbefore (for the following fixed 

parameters of τgap=3, τinterval-gap=3, τduring=1, τoverlap=1, 

MinSupport=0.1)

Fig. 5. Number of causal relations found while varying 

a parameter τoverlap (for the following fixed parameters 

such as τgap=3, τinterval-gap=3, τduring=1,τbefore=1, 

MinSupport=0.1)

Fig. 6.   Number of causal relations discovered while 

varying a parameter τduring (for the following fixed 

parameters such as τgap=3, τinterval-gap=3, 

τduring=1,τbefore=1, MinSupport=0.1)

In Fig. 1, we can see that the number of interval events is 

decreased when τgap is increased. However, we found that the 

number of temporal interval relations is increased while τgap 

increases. As the length of the τgap increases, the duration of 

the interval events also increases. We found that there can be 

more temporal interval relations between long interval events 

and short interval events than those between only short interval 

events. If long interval events do not clearly represent the 

persistency of events, their temporal interval relations are also 

not reasonable.

As shown in Fig. 2, when τgap is increased, three types of 

interval relations, including IRoverlap, IRduring, and IRduringx have 

an effect on the increase of the number of temporal interval 

relations. For example, long duration interval events can be 

more closely related to short duration events by “during”, 

“duringx”, or “overlap”. From Fig.1, we can see that the size of 

IR is larger than that of IRc, because IR is computed when τgap 

is infinite.

Fig. 3 shows that for all values of τgap, FCR-CRc contains 

significantly more information than FCR-FIR and FCR-FIRc. 

FCR is a set of causal relations when τgap is infinite (∞). As a 

result, DFCR-CRc discovers much more information from the 

time-point data set. 

To determine the interval relation types that have an effect on 

the frequent causal relations, we inspect the change of the 

number of frequent causal relations while varying the 

time-constraints of τbefore, τoverlap, and τduring. Only these three 

constraints have an effect on causal relations.

Also, we compare only two methods, DFCR-CRc and 

DFCR-FIRc, because DFCR-FIR is a special case of 

DFCR-FIRc when τgap is infinite. In Fig. 4, for the given 

parameter values of τgap(=3), τduring (=1), τoverlap (=1), and 

MinSupport(=0.1), we find the degree to which a parameter τ

before has an effect on the number of causal relations. In Fig. 5, 

for given parameter values of τgap(=3), τduring (=1), τbefore (=1), 

and MinSupport(=0.1), we find the degree to which a parameter 

τoverlap has an effect on the number of causal relations. In Fig. 6, 

for given parameter values of τgap (=3), τoverlap (=1), τbefore (=1), 
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and MinSupport(=0.1), we find how a parameter τduring has an 

effect on the quality of causal relations. As shown in Fig. 4, 

Fig. 5, and Fig. 6, for all parameter values, DFCR-CRc 

discovers considerably more causal relations than DFCR-FIRc. 

This is because different infrequent interval relations can be 

transformed into the same causal relation. For example, 

overlap(A,B) and before(A,B) produce the same causal relation 

of A→B. Let #rel(X,Y) be the number of a relations rel(X,B). 

Even though both temporal interval relations are infrequent, if 

(#overlap(A,B) + #before(A,B) ) > MinSupportCount, the causal 

relation A→B is frequent.

As shown in Fig. 4, when τbefore increases, the number of 

causal relations increases in DFCR-CRc and DFCR-FIRc

because Constraintbefore becomes stronger when the value of τ

before decreases. For example, for two interval-based events, 

(A,[8,10]) and (B,[12,14]), if τbefore =1, there is no temporal 

interval relation, but if τbefore=2, there is a temporal interval 

relation before(A,B) and a causal relation A→B. As shown in 

Fig. 5, for τoverlap, when its value is increasing, the number of 

causal relations is almost the same, but the number of causal 

relations for a high value is always less than that of its low 

value. This is because Constraintoverlap becomes stronger when 

the value of τoverlap increases. For example, for two 

interval-based events (A, [10,14]) and (B, [12,15]), if τoverlap=1 

or τoverlap=2, there is a temporal interval relation overlap(A, B) 

and a causal relation A→B, but if τoverlap=3, there is no 

temporal interval relation because the condition of 

(startTime(B) - startTime(A))> 2 must be satisfied. Fig. 6 shows 

that for τduring, when its value increases, the number of causal 

relations decreases. This is also because Constraintduring

becomes stronger when the value of τduring becomes larger. 

For example, for two interval-based events (A, [10,16]), and (B, 

[12,15]), if τduring=1 or τduring=2, a temporal interval relation 

during(B, A) and a causal relation A→B occur, but if τduring=3, 

no temporal interval relation exists because the condition of 

(startTime(B) - startTime(A))> 2 is not satisfied.

From the result of experiments (see Fig. 4, 5, and 6), we can 

find that the DFCR-CRc method discovers much more causal 

relations than DFCR-FIRc. This is because of the two following 

facts.

Fact 1: The number of different causal relations is less than or 

equal to the number of different interval relations.

Fact 2: The number of frequent causal relations discovered by 

DFCR-CRc is greater than or equal to the number of causal 

relations discovered by DFCR-FIRc.

   Assume that #P denotes the number of relations P. For 

example, #before(A, B) denotes the number of temporal interval 

relations before(A, B). Fact 1 exists because several different 

temporal interval relations can be mapped into one causal 

relation. For example, two temporal interval relations before(A, 

B) and overlap(A, B) are both represented by one causal relation 

A→B. In DFIR-CRc, even though before(A, B) and overlap(A, 

B) are both infrequent interval relations, #(A→B) can be 

frequent because (#(A→B)before + #(A→B)overlap) can be greater 

than or equal to the given MinSupportCount. Therefore, Fact 2

is always true.

   It is better to discover frequent causal relations from temporal 

interval relations that could be infrequent than to discover 

frequent causal relations from frequent temporal interval 

relations. That is, DFCR-CRc can find frequent causal relations 

from temporal interval relations which might be infrequent. 

Therefore, the frequent causal relations discovered by 

DFIR-CRc can represent more important knowledge than those 

discovered by DFIR-FIRc. Parameters τbefore,τoverlap, andτduring

are properly adjusted by domain experts. For example, a patient 

can have symptom B after symptom A disappears, and another 

patient might have symptom B during the lifetime of symptom 

A. In this case, it is reasonable to infer that A is a cause 

symptom for B. Our proposed DFCR-CRc method discovers 

more valuable knowledge than DFCR-FIR or DFCR-FIRc.

Ⅵ. Conclusion and Future Works

We proposed a method that discovers temporal interval 

relations and causal relations from time-point-based events. To 

discover qualitative information from the event set, we found 

that a sequence of persistent events of the same type needs to be 

summarized into one interval event. It may be difficult to 

discover the temporal relations directly from the 

time-point-based events. Thus, we summarized the sequences 

of time-point-based events of the same type into interval-based 

events. From the interval-based events, temporal interval 

relations and causal relations were discovered. From the 

temporal interval relations, we can find effective causal 

relations if some parameters such as τbefore,τoverlap,τduring and 

MinSupport are properly selected by domain experts. We 

showed three methods (DFCR-FIR, DFCR-FIRc, and 

DFCR-CRc) used for discovering causal relations from 

temporal interval relations. Through the experiments, we found 

that the DFCR-CRc method discovers more effective and 

qualitative information than DFCR-FIRc and DFCR-FIR. We 

also proposed a new evaluation measurement that can be used 
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for ordering the major causes of an event.

In future work, based on the history data of patients, we 

intend to develop a method to predict time-points or time 

intervals at which an event is likely to occur. It is also important 

to discover temporal and causal relations among events 

(symptoms).
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