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[요    약] 

본 논문에서는 문장에서 단어가 전달하는 정보의 양을 추측할 수 있는 LSTM 신경망 기반 언어 모델링  시스템을 제안하였다. 

제안한 시스템을 이용하여 문장의 각 단어에 대한 읽기 시간이 써프라이절과 엔트로피 감소와 같은 정보 이론적 측정치에 의해 예

측될 수 있는지 비교 분석하였다. LSTM 기반 언어 모델은 영어 문장 말뭉치를 대상으로 심층 학습이 진행되었으며, 심층 학습된 

모델을 통해 실험실에서 한국인 영어 학습자가 읽은 영어 테스트 문장의 각 단어에 대한 써프라이절과 엔트로피 감소 측정치를 계

산하였다. 그리고 언어 모델의 문장 처리 결과는 선형 mixed-effect 통계 모델을 구축하여 정보 이론적 측정치와  읽기 시간을 비교 

분석하였다. 실험 결과, LSTM 신경망 기반 언어 모델을 이용하여 예측한 문장에 대한 써프라이절과 엔트로피 감소 정보는 문장 

이해 (즉, 읽기 시간)와 양의 상관관계가 있음을 써프라이절과 엔트로피 감소 가설을 검증하여 확인할 수 있었다.

[Abstract]

We are to build a Long Short-Term Memory (LSTM) network-based language model which can estimate the amount of 

information that words in sentences convey. We are then to investigate whether reading-times on words in a sentence are predicted 

by information-theoretic measures such as surprisal and entropy reduction. Specifically, the proposed LSTM deep-learning model 

is first to be trained on the large dataset of learner English sentences and is then to be applied to estimate the two different 

information-theoretic measures on each word of the test data of English sentences. The reading times on the words in the test data 

are to be collected from the Korean English L2 learners reading the test sentences. A comparison between the 

information-theoretic measures and reading-times by using a linear mixed effect model reveals a reliable relationship between 

surprisal/entropy reduction and reading time. We conclude that both surprisal and entropy reduction are positively related to the 

processing effort (i.e. reading time), confirming the surprisal/entropy-reduction hypothesis. 

색인어 : 장단기 기억 신경망, 언어 모델, 써프라이절, 엔트로피 감소

Key word : Entropy reduction, Long Short-Term Memory network, Language model, Surprisal
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Ⅰ. INTRODUCTION

In the last several years, there has been substantial success in 

applying recurrent neural networks (RNNs) to a language 

modeling. For example, given that a language model tries to 

predict the next word based on the previous ones in a sentence, if 

one is trying to predict the last word in “the clouds are in the sky,” 

one doesn’t need any further context – it’s pretty obvious that the 

next word is going to be sky. In similar cases, where the gap 

between the relevant information and the place where it’s needed 

is small, RNNs can learn to effectively use the information that 

has evolved. 

But there are cases where we need more contextual 

information in making a prediction. If one is trying to predict the 

last word in the following discourse like “I grew up in Korea. …  

I speak fluent Korean”, the information given immediately prior 

to the last word (i.e., speak) suggests that the last word at hand is 

most probably the name of a language, but if we want to narrow 

down which language it is, we need to retrieve the information 

from the word Korea given in the preceding sentence further 

back. It’s thus certainly evident that the gap between the relevant 

information and the point where it is needed becomes very large. 

Unfortunately, as such a gap grows large, RNNs become 

unable to learn to connect that gap. But the Long Short-Term 

Memory (LSTM) networks as a special kind of RNN are capable 

of learning long-term dependencies. LSTMs are explicitly 

designed to resolve the long-term dependency problem [1].

Much recent works in computational linguistics and natural 

language processing (NLP) have employed the information theory 

to bridge between language models and cognitive experiments 

[2-5]. For example, as one reads a certain sentence, one 

understands each word based on one’s understanding of previous 

words. Each word conveys a certain amount of information. The 

amount of information conveyed by a word (or word-information 

for short) can be computed from probabilistic models of language, 

whereas the amount of cognitive effort involved in processing a 

word can also be calculated by measuring word reading times 

taken during the task of reading words in a sentence [6-7]. 

In other words, the reading time for a word in a sentence 

depends on the amount of information that the word at hand 

conveys. The relation between the reading time and the measure 

of word-information has been elaborated on and more clearly 

defined by the development of sentence-processing models. 

Particularly, the comparison between reading times and 

word-information values has revealed that more informative 

words take longer to read [8].  

More relevant to the issue in this paper, several previous 

studies have shown that surprisal (the next-word entropy effect) 

and entropy reduction can serve as the cognitively relevant 

measure for two distinct kinds of word-information process. One 

recent RNN language model shows that the reading-time effects 

of both surprisal and entropy reduction can result from a single 

processing mechanism [9]. It shows that word-processing times in 

the sentence comprehension model correlate positively with both 

surprisal and entropy reduction. The model thereby plays an 

integral role in making a computation-level prediction of the 

relation between reading times and the two measures of 

word-information.

Given this background, in this paper we propose a sentence 

comprehension language model based on a deep-learning LSTM 

model and investigate whether reading times are predicted by the 

two kinds of information measure. In section 2, we preview 

related works on deep-learning language modeling and 

word-information measures. In section 3, we design a 

word-predicting language model based on LSTM networks with 

word embeddings and then describe the corpus and the 

experimental methods to be employed here. Interpretation of the 

results is discussed in section 4. Finally, section 5 concludes the 

discussion. 

Ⅱ. METHODS

In this section, we describe the word-information measures, the 

linear mixed-effects model, and the deep-learning LSTM model 

of the experimental environment to be built for the language 

model system implementation of sentence comprehension.

2-1 Word-information measures

1) Surprisal 

The comprehension process for a k-word sentence can be 

assumed to comprise a sequence of comprehension events for k

words:   ⋯   or 
, or  … 

for short. After the first t

words of the sentence (i.e., 
) have been processed, the identity 

of the upcoming word,    , is still unknown and can be viewed 

as a random variable.

The first important concept from the word-information theory 

is surprisal [8]. It is a measure of the uncertainty about the 

outcome of a random variable, which is quantified by the 

probability of the actual next word    , given the sentence:

     log  
  (1)
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Informally, the surprisal of a word can be said to measure the 

extent to which its occurrence is unexpected.

The language model’s output after processing the sequence 


forms an estimate of   
  for each possible next word 

   , which translates directly into the surprisal of the actual 

upcoming word.

2) Entropy reduction

The second important concept from the word-information 

theory is entropy [8]. After processing the sequence 
 , the 

uncertainty about the remainder of the sentence is quantified by 

the entropy of the distribution of probabilities over the possible 

continuations    … 
 (with ). The entropy will be formally 

defined as

    … 
   

  …

   … 

 log   … 


  (2)

where    …  is a random variable with the particular sentence 

continuations    … 
as its possible outcomes.

When the next word is encountered, this will usually decrease 

the uncertainty about the rest of the sentence, that is,     … 


is generally smaller than    …  . The difference between 

the two is the entropy reduction, which will be formally defined

∆     …     … 
 (3)

Informally, entropy reduction can be said to quantify how 

much ambiguity is resolved by the current word, to the extent that 

disambiguation reduces the number of possible sentence 

continuations.

Entropy is computed over probabilities of the sentences 

themselves. That is, the Eq. (2) contains only word sequences 

instead of structures. As a consequence, there is no more 

uncertainty about what has occurred up to the current word  . 

Although the intended structure of 
  may be uncertain, the word 

sequence itself is not. This means that only the upcoming input 

sequence (i.e., from    onward) is relevant for entropy. 

However, the number of upcoming input sequences is far too 

large for the exact computation of entropy, even if infinite-length 

sequences are not allowed and some upper bound on sequences 

length is assumed. Therefore, probabilities are not estimated over 

complete sentence continuations. Instead, the look-ahead distance 

is restricted to some small value n, that is, only the upcoming n

words are considered. 

In this paper, we consider that entropy is computed over the 

distribution   
  

 , which is computed from the LSTM 

language model’s output by applying the chain rule: 

  
   

 
  



  
    

The definition of entropy from Eq. (2) now becomes

    …   

    

 …

  
  

 log  
   

 

The number of elements in the set    …    grows 

exponentially as the n increases. Consequently, the computation 

time grows exponentially. In this paper, the current simulations 

do for n = 3 and 4. 

An alternative expression for entropy reduction from Eq. (3) 

can be simplified as

∆    …   
   

    …   

         …     


  

     (4)

2-2 Linear mixed-effects model

To model a linear relationship for data points with inputs of 

word-information measures, we employ a linear mixed-effects 

model. This model describes the relationship between a 

response variable and independent variables, with coefficients 

that can vary with respect to one or more variables. It consists 

of two parts: fixed effects and random effects. Fixed-effects 

terms are usually the conventional linear regression part, 

whereas the random effects are associated with individual 

experimental units drawn at random from a population. 

We fitted a linear mixed-effects model by using the popular 

lme4 package [10]. The independent variables are 

word-information values, while the response variable is 

reading-time values for words in sentences.

2-3 Deep-learning language model

1) Word embedding

With preprocessed sentences, the words extracted were 

encoded into dense word embedding.

In NLP, word embedding is a method of mapping that allows 

words with similar meanings to have similar representations. We 

used the Word2vec algorithm, which compresses the dimensions 

of a word vector from the vocabulary size to the embedding 

dimension [11-12]. To implement the Word2vec algorithm, we 

trained it with a total 231005 sentences, with 2,760,125 raw 

words and 8000 unique words, and with a learning rate of 0.025 
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decreasing by 0.02, decreasing over 10 epochs.

2) LSTM network

RNN is a neural network that attempts to model time or 

sequence dependent behaviour like language. 

RNN is performed by feeding back the output of a neural 

network layer at time  to the input of the same network layer at 

time t+1. The problem with vanilla RNN is that as we try to 

model dependencies between words or sequence values that are 

separated by a significant number of other words, we experience 

the vanishing gradient problem. This is because small gradients or 

weights (values less than 1) are multiplied many times over 

through the multiple time steps, and the gradients shrink 

asymptotically to zero. This means that the weights of those 

earlier layers won’t be changed significantly, and therefore the 

network won’t learn long-term dependencies.

LSTMs are a way of solving this problem for word prediction. 

An LSTM network has LSTM cell blocks in place of our standard 

neural network layers. These cells have various components 

called the input gate (which acts to “kill off” any elements of the 

input vector that are not required), the forget gate (which helps 

the network learn which state variables should be “remembered” 

or “forgotten”), and the output gate (which determines which 

values are actually allowed as an output from the state cell). 

In LSTMs, all the weights and bias values are matrices and 

vectors, respectively. Input data are represented as Word2vec 

embedding vector to input words to a neural network, which 

involves taking a word and finding a vector representation of that 

word which captures some meaning of the word. 

In the section 3.1 to follow, we set up what is called an 

embedding layer, to convert each word into a meaningful word 

vector. We have to specify the size of the embedding layer (which 

the length of the vector each word is represented by). This is 

usually in the region of between 100-500. In other words, if the 

embedding layer size is 400, each word will be represented by a 

400-length vector( i.e.,   ⋯    )

Ⅲ. PROPOSED LANGUAGE MODEL

A language model can predict the probability of the next word 

in the sequence, based on the words already observed in the 

sequence. Neural network models are a preferred method for 

developing statistical language models because they can use a 

distributed representation where words with similar meanings 

have similar representations and because they can use a large 

context of recently observed words when making predictions .

We build a language model to predict the word-to-word of a 

sentence by using LSTM networks.

3-1 LSTM language model architecture

This section illustrates what a full LSTM language model  

 architecture looks like.  Fig. 1 presents a word-to-word 

prediction model including multiple layers such as input layer, 

embedding layer, two LSTM layers, linear layer, Softmax layers, 

and output layer. 

Fig. 1. A word-to-word prediction language model

The input sentence (for example, Language offers something 

more valuable than mere information exchange <eos>) with an 

extra unit that represents <eos>; that is, the end of the sentence is 

fed into the embedding layer and then two layers of LSTM 

cells. We define the shape of the inputs as batch size and 

maximum-length of a sentence. In the diagram the LSTM 

network is shown as unrolled over all the time steps. Each input 

unit corresponds to one word, making maximum input units 

(i.e., 40 words) fix maximum-length words in the input 

sentence with variable length. 

Specially, for each input unit in the number of time steps, we 

set a 400 length word embedding vector to represent the input 

word. These embedding vectors are pre-trained before the overall 

model learning.  

The LSTM layer’s output units represent predictions of 

subsequent inputs. We set the hidden-state size as 512. So, the 

output units has (batch size, maximum-length sequence, 

hidden-state size) dimensional shape. The output units from 

hidden LSTM layers are applied to a linear layer of size (batch 
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size, hidden-state size, vocabulary size). Then the outputs from 

the linear layer at each time step are passed to a Softmax layer 

with a Softmax activation. The Softmax function makes sure that 

the output unit sums to one and can therefore be viewed as a 

probability distribution.

The output layer also has one unit for each predicted word, 

plus an extra unit that represents padding character <pad>, that is, 

the correction of the maximum length of the sentence (for 

example, nature this common than before capacity from <pad> 

<pad> ...<pad>). The output unit is compared with the training 

data, and the error and gradient back propagation is performed 

from there. The training data in this case is the input words 

advanced one time step. In other words, at each time step the 

model is trying to predict the very next word in the sequence. 

3-2 Data

We trained a language model of English, based on a dataset 

which contains a collection of all the 231005 sentences (a total of  

2,760,125 word tokens, and 30,606 unique words) from the 

written-text. The dataset was compiled from a collection of 

middle and high school English textbooks published in Korea in 

2001 and 2009.

Meanwhile, the test sentences to measure word reading times 

were collected from the College Scholastic Ability Tests 

administered in Korean in 2016 and 2017. They consist of 58 

sentences and contain 1,047 words. The average sentence length 

is 18.1 words, with a maximum of 37. One example sentence 

from these experimental sentences is shown in Table 1. 

Table 1. An example experimental sentence 

index sentence

1
Language offers something more valuable than mere 
information exchange <eos>

In the reading time experiment, each test sentence preceded by 

a fixation cross was presented in a word-by-word manner, with 

each word in 23-point Courier New font appearing at the center of 

the screen. The stimuli were presented in a self-paced reading 

paradigm controlled by E-prime psychology tool. The sentences 

were followed by a yes/no comprehension question. 

Thirty (male: 20) Korean L2 late learners of English (mean 

age: 24 years, SD: 1.7) without immersion education in the L2 

English environment before puberty participated in the present 

experiment. All the participants were undergraduate students, and 

their English proficiency was relatively high; they had high scores 

on TOEIC (mean: 932.6, SD: 45.1, range: 850-990). They gave 

written informed consent to their participation and were paid for 

their participation. 

For pre-processing, sentence initial and sentence-final words 

were removed, as well as words directly following a comma.  We 

then log-transformed reading times and standardized word-length, 

sentence position, and word position for a linear mixed-effects 

regression model [13-14].

3-3 A sentence comprehension with language model

This section introduces the process of a sentence 

comprehension with our language modeling system. As depicted 

in Fig. 2, in the training phase the text preprocessing steps are 

built with certain NLP tools so as to better ensure the accuracy of 

our output. Then the texts are represented in a pre-trained 

Word2vec vector space and used as input for the LSTM model in 

Fig. 1. We train a language model over the training set. 

In the prediction phase, we build the prediction model to 

predict the next word using the trained model. The model predicts 

the probability of each word, given a history of previous words in 

the input sentence. The predicted words are fed in as input to in 

turn generate the next word. 

Finally, we build a linear mixed-effect model to evaluate the 

sentence comprehension with the word-to-word prediction by 

using the two measures of surprisal and entropy reduction and 

compare the correlation between  the two word-information 

measures and the reading time. 

Fig. 2. Proposed system

1) Sentences preprocessing

In order to get the sentence into the right shape for input into 

the LSTM language model, each unique word in the text file must 

be assigned a unique integer index. 

As depicted in Fig. 3, the unstructured sentence is first 

pre-processed in the following three steps: The first step is to 

transform the letters to lower case, remove punctuations, hyphen, 

coma, and numbers from the text, and strip any excess white 

spaces from them. The second step is to tokenize sentences into 

words. The last step is to save training words and test words into 

two separate files for usage in the training and test steps.
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Fig. 3. Sentences preprocessing

Basically, the given text file (including sentences with <eos>) 

was preprocessed into separate words and <unk>. In other words, 

only the most frequent words (8000 words) were stored in its 

word dictionary, the others were replaced by the token <unk>, 

and the words were separated with spaces according to consistent 

tokenization rules, and the sentences were segmented one per 

line.

Finally, the original text file was converted into a list of these 

unique integers, where each word is substituted with its new 

integer identifier. This allows sentences to be consumed in the 

neural network.

2) Word vector representation

As in Fig. 2, we convert our words (referenced by integers in 

the data) into meaningful embedding vectors using the vocabulary 

dictionary and pre-trained Word2vec model. 

The input sequences in the input layer need to be long enough 

to allow the model to learn the context for the words to predict. 

To pad input sequences to the same length, we tested the ability 

of the model to learn with differently sized input sentence. So we 

built a matrix of (batch size, input size, vocabulary size) where 

each row corresponds to a word embedding vector and the length 

of the input sentence is 40 words. 

Input sequences that are shorter than 40 words are padded with 

value (i.e., <pad>) at the end. The longer input sequences are 

truncated so that they fit the desired length. This layer replaces 

each word index with a word vector of size (200, 40, 8000).

3) Deep-learning model training

The model we trained learns to predict the probability 

distribution for the next word using the context of the preceding 

words. It predicts the next word with a probability for each word 

in the vocabulary.

We here specify the type of optimization to perform the given 

model. The LSTM model is compiled specifying the categorical 

cross entropy loss needed to optimize the model. For this purpose 

the efficient Adam optimizer was used.

In order to get good results, we have to run the model over 

many epochs, and the model needs to have a significant level of 

complexity to optimize learning parameters. Therefore, we run 

the model up to 10 epochs and get some reasonable initial results. 

Finally, the model was optimized on the training data for 5 

training epochs with optimal model parameters. The results are as 

follows in Table 2 and 3: batch size=200, input size=40, hidden 

size=512, vocabulary size=8000. After 5 epochs, training 

accuracy was around 82%, while validation accuracy reached 

approximately 81%. 

Table 2. Model training with parameters

Layer (type) Output Shape Param. numbers

Input layer (200, 40) 0

Embedding (200, 40, 400) 3200000

LSTM (200, 40, 512) 1869824

LSTM (200, 40, 512) 2099200

Linear (200, 40, 8000) 41004000

Softmax (200, 40, 8000) 0

Table 3. The performance with accuracy

Epoch number Training accuracy Validation accuracy

1 0.7853 0.7983

2 0.8046 0.8550

3 0.8107 0.8085

4 0.8153 0.8037

5 0.8190 0.8062

4) Model prediction

As depicted in Fig.2, the next word from the previous word 

given test sentences is predicted in the following two steps. The 

first step is to preprocess sentences. The second step is to predict 

the upcoming word in a sentence using the optimal LSTM model 

and compare the predicted word outputs with the actual word 

sequences from the test set.

The optimal LSTM model was employed to get the three 

different word-information values such as surprisal and two 

entropy-reductions from Eq. (1) and Eq. (4) on each word of a 

test set of English sentences.

To estimate the sentence processing with the word-to-word 

prediction using the two  measures of surprisal and entropy 

reduction, we formulated a linear mixed-effect model in the lmer 

package for R language as follows:

mod←lmerlog∼∆ ∆    (5)

where the term (1|Object) means the random effect variable. The 

term log(RT) means the log function value of reading-time values 

for words. Model  represents a linear mixed-effects model using 
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the lmer function with one dependent variable log(RT) and fixed 

effect three variables from Eq. (1) and Eq. (4). 

3-4 Experimental environment

In this section, we describe the hardware and software of the 

experimental environment built for the implementation of 

proposed system.

Table 4 shows the hardware used in the experiment: NVIDIA 

GTX 1080 is used as the graphics processing unit (GPU) 

specification to shorten learning time. The central processing unit 

(CPU) is i5-2500K, and memory is 32G. The hard disk drive 

(HDD) uses 256G SSD.

Table 4. Hardware configuration

Name Version

GPU NVIDIA GTX 1080

CPU i5-2500K

Memory 32G

HDD 256G SSD

Table 5 shows the software used in the Windows 7 experiment: 

We used PyCharm, a python development toolkit, for 

python-based projects. We preprocessed the sentences by using 

the natural language toolkit (NLTK) library which is a Natural 

Language Toolkit. The Word2Vec module uses Gensim open 

source. The proposed LSTM language model was implemented 

using Tensorflow and Keras open source. We measured the 

reading time of the sentences using E-Prime psychology tool and 

implemented the liner mixd-effects model by using lme4 package.

Table 5. Software configuration

Name version

NLTK 3.2.5

Gensim 3.4.0

Tensorflow/Keras 1.0.0 /2.2.4

lme4 1.1-19

E-Prime 3.0

Ⅳ. THE RESULT: LANGUAGE MODEL, 

READING-TIME, & THEIR CORRELATION 

4-1 Word-information extraction from sentences

The language model was used to compute surprisal and 

entropy reduction values for each word of the test sentences. 

Table 6 shows an example of 16-word sentence, with each 

word’s surprisal and ∆ and ∆ being estimated by the 

model. It shows that the values of entropy reduction from ∆ to 

∆ correspond to a decrease in entropy. The reading times on 

the words in the same sentence were collected from the Korean 

English L2 learners reading the test sentences.

Table 6. An example for Word-Information Values

word surprisal reading-time ∆ ∆
Your 4.105 0.052 0.083 0.024

love 3.404 -0.099 0.219 0.056

scenes 1.763 0.177 0.158 0.088

will 2.066 0.186 0.260 0.057

contain 1.461 -0.02 0.145 0.050

hints 2.445 0.064 0.206 0.088

of 1.689 0.005 0.232 0.048

your 1.818 -0.168 0.158 0.036

own 2.395 -0.086 0.146 0.115

past 1.944 -0.006 0.194 0.029

kisses 2.070 0.1653 0.094 0.157

and 2.051 -0.034 0.290 0.058

sweet 0.754 -0.093 0.100 0.004

moments. 3.415 0.013 0.055 0.066

Your 2.913 0.052 0.064 0

love 0.630 -0.099 0 0

4-2 Relationship between information measures

In Table 6, surprisal and two kinds of entropy reduction ∆

and ∆ are taken as measures for the amount of information 

conveyed by words. We assume the entropy-reduction hypothesis 

that information-theoretic measures are positively correlated 

with the reading-time cognitive measures.

Fig. 4 shows the linear relationship between three measures 

with surprisal, ∆ , and ∆ . However, it shows that the 

correlation between surprisal and entropy reduction is in fact 

quite weak. This means that surprisal and entropy reduction come 

into play independently during sentence processing. In contrast, 

the two  measures of entropy reduction ∆ and ∆ correlate 

very strongly with each other.

Fig. 4. The correlation between word-information measures

To check the correlation between word-information measures 
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and cognitive measure (i.e., reading time), we performed the 

linear mixed-effects regression model from Eq. (5). Using the 

statistical hypothesis test with the std. error (which is the standard 

deviation of the sampling distribution of a statistic, most 

commonly of the mean) and the t value and Pr-value, we observe 

in Table 7 that both surprisal and entropy reduction ∆ have 

statistically significant p-values. However, we note in Table 7 that 

∆ does not have a statistically significant p-value.

Table 7. Comparison between reading-time and word- 

information measures

Estimate std. err t value Pr(>|t|)

intercept 2.677e+0 1.219e-02 219.515 <2e-16

surprisal -2.043e-03 9.936e-04 -2.056 0.0397

∆ -8.696e-4 1.058e-03 0.822 0.4109

∆ 2.375e-03 1.074e-03 2.212 0.0269

Ⅴ. CONCLUSION

The proposed system has shown that the reading-time effect of 

both surprisal and entropy reduction can indeed result from a 

sentence processing/comprehension with a single recurrent neural 

network model. It has simulated sentence comprehension by 

employing the Word2vec representation described by a sentence. 

In this network model, surprisal and entropy reduction have been 

defined by a probabilistic LSTM model rather than the traditional 

language model. The amount of cognitive effort required to 

process a word has been argued to depend on the uncertainty of 

that word in an evolving sentence, as quantified by the entropy 

over sentence probabilities. 

We have tested this hypothesis more thoroughly than has been 

done before by using an LSTM network for the estimation of 

surprisal and entropy reduction. A comparison between these 

estimates and word-reading time shows that entropy reduction 

∆ is positively related to the word reading or processing 

cognitive effort, confirming the entropy-reduction hypothesis. 

The effect of surprisal is also correlated with the word reading or 

processing cognitive effort. 
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