
Copyright ⓒ 2018 The Digital Contents Society 2393 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

http://dx.doi.org/10.9728/dcs.2018.19.12.2393

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 14 November 2018;Revised 04 December 2018

Accepted 23 December 2018

*Corresponding Author; Euhee Kim

Tel: +82-31-870-1740

E-mail: euhkim@shinhan.ac.kr

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 19, No. 12, pp. 2393-2401, Dec. 2018

LSTM 언어 모델을 이용한 문장 이해

김 유 희
신한대학교 컴퓨터공학전공

Sentence Comprehension with an LSTM Language Model

Euhee Kim

Computer Science & Engineering, ShinhanUniversity, Dongducheon, Gyeongggi 483-777, Korea

[요 약]

본 논문에서는 문장에서 단어가 전달하는 정보의 양을 추측할 수 있는 LSTM 신경망 기반 언어 모델링 시스템을 제안하였다.

제안한 시스템을 이용하여 문장의 각 단어에 대한 읽기 시간이 써프라이절과 엔트로피 감소와 같은 정보 이론적 측정치에 의해 예

측될 수 있는지 비교 분석하였다. LSTM 기반 언어 모델은 영어 문장 말뭉치를 대상으로 심층 학습이 진행되었으며, 심층 학습된

모델을 통해 실험실에서 한국인 영어 학습자가 읽은 영어 테스트 문장의 각 단어에 대한 써프라이절과 엔트로피 감소 측정치를 계

산하였다. 그리고 언어 모델의 문장 처리 결과는 선형 mixed-effect 통계 모델을 구축하여 정보 이론적 측정치와 읽기 시간을 비교

분석하였다. 실험 결과, LSTM 신경망 기반 언어 모델을 이용하여 예측한 문장에 대한 써프라이절과 엔트로피 감소 정보는 문장

이해 (즉, 읽기 시간)와 양의 상관관계가 있음을 써프라이절과 엔트로피 감소 가설을 검증하여 확인할 수 있었다.

[Abstract]

We are to build a Long Short-Term Memory (LSTM) network-based language model which can estimate the amount of

information that words in sentences convey. We are then to investigate whether reading-times on words in a sentence are predicted

by information-theoretic measures such as surprisal and entropy reduction. Specifically, the proposed LSTM deep-learning model

is first to be trained on the large dataset of learner English sentences and is then to be applied to estimate the two different

information-theoretic measures on each word of the test data of English sentences. The reading times on the words in the test data

are to be collected from the Korean English L2 learners reading the test sentences. A comparison between the

information-theoretic measures and reading-times by using a linear mixed effect model reveals a reliable relationship between

surprisal/entropy reduction and reading time. We conclude that both surprisal and entropy reduction are positively related to the

processing effort (i.e. reading time), confirming the surprisal/entropy-reduction hypothesis.

색인어 : 장단기 기억 신경망, 언어 모델, 써프라이절, 엔트로피 감소

Key word : Entropy reduction, Long Short-Term Memory network, Language model, Surprisal

https://crossmark.crossref.org/dialog/?doi=10.9728/dcs.2018.19.12.2393&domain=http://journal.dcs.or.kr/&uri_scheme=http:&cm_version=v1.5

디지털콘텐츠학회논문지(J. DCS) Vol. 19, No. 12, pp. 2393-2401, Dec. 2018

http://dx.doi.org/10.9728/dcs.2018.19.12.2393 2394

Ⅰ. INTRODUCTION

In the last several years, there has been substantial success in

applying recurrent neural networks (RNNs) to a language

modeling. For example, given that a language model tries to

predict the next word based on the previous ones in a sentence, if

one is trying to predict the last word in “the clouds are in the sky,”

one doesn’t need any further context – it’s pretty obvious that the

next word is going to be sky. In similar cases, where the gap

between the relevant information and the place where it’s needed

is small, RNNs can learn to effectively use the information that

has evolved.

But there are cases where we need more contextual

information in making a prediction. If one is trying to predict the

last word in the following discourse like “I grew up in Korea. …

I speak fluent Korean”, the information given immediately prior

to the last word (i.e., speak) suggests that the last word at hand is

most probably the name of a language, but if we want to narrow

down which language it is, we need to retrieve the information

from the word Korea given in the preceding sentence further

back. It’s thus certainly evident that the gap between the relevant

information and the point where it is needed becomes very large.

Unfortunately, as such a gap grows large, RNNs become

unable to learn to connect that gap. But the Long Short-Term

Memory (LSTM) networks as a special kind of RNN are capable

of learning long-term dependencies. LSTMs are explicitly

designed to resolve the long-term dependency problem [1].

Much recent works in computational linguistics and natural

language processing (NLP) have employed the information theory

to bridge between language models and cognitive experiments

[2-5]. For example, as one reads a certain sentence, one

understands each word based on one’s understanding of previous

words. Each word conveys a certain amount of information. The

amount of information conveyed by a word (or word-information

for short) can be computed from probabilistic models of language,

whereas the amount of cognitive effort involved in processing a

word can also be calculated by measuring word reading times

taken during the task of reading words in a sentence [6-7].

In other words, the reading time for a word in a sentence

depends on the amount of information that the word at hand

conveys. The relation between the reading time and the measure

of word-information has been elaborated on and more clearly

defined by the development of sentence-processing models.

Particularly, the comparison between reading times and

word-information values has revealed that more informative

words take longer to read [8].

More relevant to the issue in this paper, several previous

studies have shown that surprisal (the next-word entropy effect)

and entropy reduction can serve as the cognitively relevant

measure for two distinct kinds of word-information process. One

recent RNN language model shows that the reading-time effects

of both surprisal and entropy reduction can result from a single

processing mechanism [9]. It shows that word-processing times in

the sentence comprehension model correlate positively with both

surprisal and entropy reduction. The model thereby plays an

integral role in making a computation-level prediction of the

relation between reading times and the two measures of

word-information.

Given this background, in this paper we propose a sentence

comprehension language model based on a deep-learning LSTM

model and investigate whether reading times are predicted by the

two kinds of information measure. In section 2, we preview

related works on deep-learning language modeling and

word-information measures. In section 3, we design a

word-predicting language model based on LSTM networks with

word embeddings and then describe the corpus and the

experimental methods to be employed here. Interpretation of the

results is discussed in section 4. Finally, section 5 concludes the

discussion.

Ⅱ. METHODS

In this section, we describe the word-information measures, the

linear mixed-effects model, and the deep-learning LSTM model

of the experimental environment to be built for the language

model system implementation of sentence comprehension.

2-1 Word-information measures

1) Surprisal

The comprehension process for a k-word sentence can be

assumed to comprise a sequence of comprehension events for k

words:   ⋯   or 
, or  … 

for short. After the first t

words of the sentence (i.e., 
) have been processed, the identity

of the upcoming word,    , is still unknown and can be viewed

as a random variable.

The first important concept from the word-information theory

is surprisal [8]. It is a measure of the uncertainty about the

outcome of a random variable, which is quantified by the

probability of the actual next word    , given the sentence:

     log  
  (1)

Sentence Comprehension with an LSTM Language Model

2395 http://www.dcs.or.kr

Informally, the surprisal of a word can be said to measure the

extent to which its occurrence is unexpected.

The language model’s output after processing the sequence 


forms an estimate of   
  for each possible next word

   , which translates directly into the surprisal of the actual

upcoming word.

2) Entropy reduction

The second important concept from the word-information

theory is entropy [8]. After processing the sequence 
 , the

uncertainty about the remainder of the sentence is quantified by

the entropy of the distribution of probabilities over the possible

continuations    … 
 (with ). The entropy will be formally

defined as

    … 
   

  …

   … 

 log   … 


  (2)

where    …  is a random variable with the particular sentence

continuations    … 
as its possible outcomes.

When the next word is encountered, this will usually decrease

the uncertainty about the rest of the sentence, that is,     … 


is generally smaller than    …  . The difference between

the two is the entropy reduction, which will be formally defined

∆     …     … 
 (3)

Informally, entropy reduction can be said to quantify how

much ambiguity is resolved by the current word, to the extent that

disambiguation reduces the number of possible sentence

continuations.

Entropy is computed over probabilities of the sentences

themselves. That is, the Eq. (2) contains only word sequences

instead of structures. As a consequence, there is no more

uncertainty about what has occurred up to the current word  .

Although the intended structure of 
 may be uncertain, the word

sequence itself is not. This means that only the upcoming input

sequence (i.e., from    onward) is relevant for entropy.

However, the number of upcoming input sequences is far too

large for the exact computation of entropy, even if infinite-length

sequences are not allowed and some upper bound on sequences

length is assumed. Therefore, probabilities are not estimated over

complete sentence continuations. Instead, the look-ahead distance

is restricted to some small value n, that is, only the upcoming n

words are considered.

In this paper, we consider that entropy is computed over the

distribution   
  

 , which is computed from the LSTM

language model’s output by applying the chain rule:

  
   

 
  



  
    

The definition of entropy from Eq. (2) now becomes

    …   

    

 …

  
  

 log  
   

 

The number of elements in the set    …    grows

exponentially as the n increases. Consequently, the computation

time grows exponentially. In this paper, the current simulations

do for n = 3 and 4.

An alternative expression for entropy reduction from Eq. (3)

can be simplified as

∆    …   
   

    …   

         …     


  

 (4)

2-2 Linear mixed-effects model

To model a linear relationship for data points with inputs of

word-information measures, we employ a linear mixed-effects

model. This model describes the relationship between a

response variable and independent variables, with coefficients

that can vary with respect to one or more variables. It consists

of two parts: fixed effects and random effects. Fixed-effects

terms are usually the conventional linear regression part,

whereas the random effects are associated with individual

experimental units drawn at random from a population.

We fitted a linear mixed-effects model by using the popular

lme4 package [10]. The independent variables are

word-information values, while the response variable is

reading-time values for words in sentences.

2-3 Deep-learning language model

1) Word embedding

With preprocessed sentences, the words extracted were

encoded into dense word embedding.

In NLP, word embedding is a method of mapping that allows

words with similar meanings to have similar representations. We

used the Word2vec algorithm, which compresses the dimensions

of a word vector from the vocabulary size to the embedding

dimension [11-12]. To implement the Word2vec algorithm, we

trained it with a total 231005 sentences, with 2,760,125 raw

words and 8000 unique words, and with a learning rate of 0.025

디지털콘텐츠학회논문지(J. DCS) Vol. 19, No. 12, pp. 2393-2401, Dec. 2018

http://dx.doi.org/10.9728/dcs.2018.19.12.2393 2396

decreasing by 0.02, decreasing over 10 epochs.

2) LSTM network

RNN is a neural network that attempts to model time or

sequence dependent behaviour like language.

RNN is performed by feeding back the output of a neural

network layer at time to the input of the same network layer at

time t+1. The problem with vanilla RNN is that as we try to

model dependencies between words or sequence values that are

separated by a significant number of other words, we experience

the vanishing gradient problem. This is because small gradients or

weights (values less than 1) are multiplied many times over

through the multiple time steps, and the gradients shrink

asymptotically to zero. This means that the weights of those

earlier layers won’t be changed significantly, and therefore the

network won’t learn long-term dependencies.

LSTMs are a way of solving this problem for word prediction.

An LSTM network has LSTM cell blocks in place of our standard

neural network layers. These cells have various components

called the input gate (which acts to “kill off” any elements of the

input vector that are not required), the forget gate (which helps

the network learn which state variables should be “remembered”

or “forgotten”), and the output gate (which determines which

values are actually allowed as an output from the state cell).

In LSTMs, all the weights and bias values are matrices and

vectors, respectively. Input data are represented as Word2vec

embedding vector to input words to a neural network, which

involves taking a word and finding a vector representation of that

word which captures some meaning of the word.

In the section 3.1 to follow, we set up what is called an

embedding layer, to convert each word into a meaningful word

vector. We have to specify the size of the embedding layer (which

the length of the vector each word is represented by). This is

usually in the region of between 100-500. In other words, if the

embedding layer size is 400, each word will be represented by a

400-length vector(i.e.,   ⋯   )

Ⅲ. PROPOSED LANGUAGE MODEL

A language model can predict the probability of the next word

in the sequence, based on the words already observed in the

sequence. Neural network models are a preferred method for

developing statistical language models because they can use a

distributed representation where words with similar meanings

have similar representations and because they can use a large

context of recently observed words when making predictions .

We build a language model to predict the word-to-word of a

sentence by using LSTM networks.

3-1 LSTM language model architecture

This section illustrates what a full LSTM language model

 architecture looks like. Fig. 1 presents a word-to-word

prediction model including multiple layers such as input layer,

embedding layer, two LSTM layers, linear layer, Softmax layers,

and output layer.

Fig. 1. A word-to-word prediction language model

The input sentence (for example, Language offers something

more valuable than mere information exchange <eos>) with an

extra unit that represents <eos>; that is, the end of the sentence is

fed into the embedding layer and then two layers of LSTM

cells. We define the shape of the inputs as batch size and

maximum-length of a sentence. In the diagram the LSTM

network is shown as unrolled over all the time steps. Each input

unit corresponds to one word, making maximum input units

(i.e., 40 words) fix maximum-length words in the input

sentence with variable length.

Specially, for each input unit in the number of time steps, we

set a 400 length word embedding vector to represent the input

word. These embedding vectors are pre-trained before the overall

model learning.

The LSTM layer’s output units represent predictions of

subsequent inputs. We set the hidden-state size as 512. So, the

output units has (batch size, maximum-length sequence,

hidden-state size) dimensional shape. The output units from

hidden LSTM layers are applied to a linear layer of size (batch

Sentence Comprehension with an LSTM Language Model

2397 http://www.dcs.or.kr

size, hidden-state size, vocabulary size). Then the outputs from

the linear layer at each time step are passed to a Softmax layer

with a Softmax activation. The Softmax function makes sure that

the output unit sums to one and can therefore be viewed as a

probability distribution.

The output layer also has one unit for each predicted word,

plus an extra unit that represents padding character <pad>, that is,

the correction of the maximum length of the sentence (for

example, nature this common than before capacity from <pad>

<pad> ...<pad>). The output unit is compared with the training

data, and the error and gradient back propagation is performed

from there. The training data in this case is the input words

advanced one time step. In other words, at each time step the

model is trying to predict the very next word in the sequence.

3-2 Data

We trained a language model of English, based on a dataset

which contains a collection of all the 231005 sentences (a total of

2,760,125 word tokens, and 30,606 unique words) from the

written-text. The dataset was compiled from a collection of

middle and high school English textbooks published in Korea in

2001 and 2009.

Meanwhile, the test sentences to measure word reading times

were collected from the College Scholastic Ability Tests

administered in Korean in 2016 and 2017. They consist of 58

sentences and contain 1,047 words. The average sentence length

is 18.1 words, with a maximum of 37. One example sentence

from these experimental sentences is shown in Table 1.

Table 1. An example experimental sentence

index sentence

1
Language offers something more valuable than mere
information exchange <eos>

In the reading time experiment, each test sentence preceded by

a fixation cross was presented in a word-by-word manner, with

each word in 23-point Courier New font appearing at the center of

the screen. The stimuli were presented in a self-paced reading

paradigm controlled by E-prime psychology tool. The sentences

were followed by a yes/no comprehension question.

Thirty (male: 20) Korean L2 late learners of English (mean

age: 24 years, SD: 1.7) without immersion education in the L2

English environment before puberty participated in the present

experiment. All the participants were undergraduate students, and

their English proficiency was relatively high; they had high scores

on TOEIC (mean: 932.6, SD: 45.1, range: 850-990). They gave

written informed consent to their participation and were paid for

their participation.

For pre-processing, sentence initial and sentence-final words

were removed, as well as words directly following a comma. We

then log-transformed reading times and standardized word-length,

sentence position, and word position for a linear mixed-effects

regression model [13-14].

3-3 A sentence comprehension with language model

This section introduces the process of a sentence

comprehension with our language modeling system. As depicted

in Fig. 2, in the training phase the text preprocessing steps are

built with certain NLP tools so as to better ensure the accuracy of

our output. Then the texts are represented in a pre-trained

Word2vec vector space and used as input for the LSTM model in

Fig. 1. We train a language model over the training set.

In the prediction phase, we build the prediction model to

predict the next word using the trained model. The model predicts

the probability of each word, given a history of previous words in

the input sentence. The predicted words are fed in as input to in

turn generate the next word.

Finally, we build a linear mixed-effect model to evaluate the

sentence comprehension with the word-to-word prediction by

using the two measures of surprisal and entropy reduction and

compare the correlation between the two word-information

measures and the reading time.

Fig. 2. Proposed system

1) Sentences preprocessing

In order to get the sentence into the right shape for input into

the LSTM language model, each unique word in the text file must

be assigned a unique integer index.

As depicted in Fig. 3, the unstructured sentence is first

pre-processed in the following three steps: The first step is to

transform the letters to lower case, remove punctuations, hyphen,

coma, and numbers from the text, and strip any excess white

spaces from them. The second step is to tokenize sentences into

words. The last step is to save training words and test words into

two separate files for usage in the training and test steps.

디지털콘텐츠학회논문지(J. DCS) Vol. 19, No. 12, pp. 2393-2401, Dec. 2018

http://dx.doi.org/10.9728/dcs.2018.19.12.2393 2398

Fig. 3. Sentences preprocessing

Basically, the given text file (including sentences with <eos>)

was preprocessed into separate words and <unk>. In other words,

only the most frequent words (8000 words) were stored in its

word dictionary, the others were replaced by the token <unk>,

and the words were separated with spaces according to consistent

tokenization rules, and the sentences were segmented one per

line.

Finally, the original text file was converted into a list of these

unique integers, where each word is substituted with its new

integer identifier. This allows sentences to be consumed in the

neural network.

2) Word vector representation

As in Fig. 2, we convert our words (referenced by integers in

the data) into meaningful embedding vectors using the vocabulary

dictionary and pre-trained Word2vec model.

The input sequences in the input layer need to be long enough

to allow the model to learn the context for the words to predict.

To pad input sequences to the same length, we tested the ability

of the model to learn with differently sized input sentence. So we

built a matrix of (batch size, input size, vocabulary size) where

each row corresponds to a word embedding vector and the length

of the input sentence is 40 words.

Input sequences that are shorter than 40 words are padded with

value (i.e., <pad>) at the end. The longer input sequences are

truncated so that they fit the desired length. This layer replaces

each word index with a word vector of size (200, 40, 8000).

3) Deep-learning model training

The model we trained learns to predict the probability

distribution for the next word using the context of the preceding

words. It predicts the next word with a probability for each word

in the vocabulary.

We here specify the type of optimization to perform the given

model. The LSTM model is compiled specifying the categorical

cross entropy loss needed to optimize the model. For this purpose

the efficient Adam optimizer was used.

In order to get good results, we have to run the model over

many epochs, and the model needs to have a significant level of

complexity to optimize learning parameters. Therefore, we run

the model up to 10 epochs and get some reasonable initial results.

Finally, the model was optimized on the training data for 5

training epochs with optimal model parameters. The results are as

follows in Table 2 and 3: batch size=200, input size=40, hidden

size=512, vocabulary size=8000. After 5 epochs, training

accuracy was around 82%, while validation accuracy reached

approximately 81%.

Table 2. Model training with parameters

Layer (type) Output Shape Param. numbers

Input layer (200, 40) 0

Embedding (200, 40, 400) 3200000

LSTM (200, 40, 512) 1869824

LSTM (200, 40, 512) 2099200

Linear (200, 40, 8000) 41004000

Softmax (200, 40, 8000) 0

Table 3. The performance with accuracy

Epoch number Training accuracy Validation accuracy

1 0.7853 0.7983

2 0.8046 0.8550

3 0.8107 0.8085

4 0.8153 0.8037

5 0.8190 0.8062

4) Model prediction

As depicted in Fig.2, the next word from the previous word

given test sentences is predicted in the following two steps. The

first step is to preprocess sentences. The second step is to predict

the upcoming word in a sentence using the optimal LSTM model

and compare the predicted word outputs with the actual word

sequences from the test set.

The optimal LSTM model was employed to get the three

different word-information values such as surprisal and two

entropy-reductions from Eq. (1) and Eq. (4) on each word of a

test set of English sentences.

To estimate the sentence processing with the word-to-word

prediction using the two measures of surprisal and entropy

reduction, we formulated a linear mixed-effect model in the lmer

package for R language as follows:

mod←lmerlog∼∆ ∆  (5)

where the term (1|Object) means the random effect variable. The

term log(RT) means the log function value of reading-time values

for words. Model represents a linear mixed-effects model using

Sentence Comprehension with an LSTM Language Model

2399 http://www.dcs.or.kr

the lmer function with one dependent variable log(RT) and fixed

effect three variables from Eq. (1) and Eq. (4).

3-4 Experimental environment

In this section, we describe the hardware and software of the

experimental environment built for the implementation of

proposed system.

Table 4 shows the hardware used in the experiment: NVIDIA

GTX 1080 is used as the graphics processing unit (GPU)

specification to shorten learning time. The central processing unit

(CPU) is i5-2500K, and memory is 32G. The hard disk drive

(HDD) uses 256G SSD.

Table 4. Hardware configuration

Name Version

GPU NVIDIA GTX 1080

CPU i5-2500K

Memory 32G

HDD 256G SSD

Table 5 shows the software used in the Windows 7 experiment:

We used PyCharm, a python development toolkit, for

python-based projects. We preprocessed the sentences by using

the natural language toolkit (NLTK) library which is a Natural

Language Toolkit. The Word2Vec module uses Gensim open

source. The proposed LSTM language model was implemented

using Tensorflow and Keras open source. We measured the

reading time of the sentences using E-Prime psychology tool and

implemented the liner mixd-effects model by using lme4 package.

Table 5. Software configuration

Name version

NLTK 3.2.5

Gensim 3.4.0

Tensorflow/Keras 1.0.0 /2.2.4

lme4 1.1-19

E-Prime 3.0

Ⅳ. THE RESULT: LANGUAGE MODEL,

READING-TIME, & THEIR CORRELATION

4-1 Word-information extraction from sentences

The language model was used to compute surprisal and

entropy reduction values for each word of the test sentences.

Table 6 shows an example of 16-word sentence, with each

word’s surprisal and ∆ and ∆ being estimated by the

model. It shows that the values of entropy reduction from ∆ to

∆ correspond to a decrease in entropy. The reading times on

the words in the same sentence were collected from the Korean

English L2 learners reading the test sentences.

Table 6. An example for Word-Information Values

word surprisal reading-time ∆ ∆
Your 4.105 0.052 0.083 0.024

love 3.404 -0.099 0.219 0.056

scenes 1.763 0.177 0.158 0.088

will 2.066 0.186 0.260 0.057

contain 1.461 -0.02 0.145 0.050

hints 2.445 0.064 0.206 0.088

of 1.689 0.005 0.232 0.048

your 1.818 -0.168 0.158 0.036

own 2.395 -0.086 0.146 0.115

past 1.944 -0.006 0.194 0.029

kisses 2.070 0.1653 0.094 0.157

and 2.051 -0.034 0.290 0.058

sweet 0.754 -0.093 0.100 0.004

moments. 3.415 0.013 0.055 0.066

Your 2.913 0.052 0.064 0

love 0.630 -0.099 0 0

4-2 Relationship between information measures

In Table 6, surprisal and two kinds of entropy reduction ∆

and ∆ are taken as measures for the amount of information

conveyed by words. We assume the entropy-reduction hypothesis

that information-theoretic measures are positively correlated

with the reading-time cognitive measures.

Fig. 4 shows the linear relationship between three measures

with surprisal, ∆ , and ∆ . However, it shows that the

correlation between surprisal and entropy reduction is in fact

quite weak. This means that surprisal and entropy reduction come

into play independently during sentence processing. In contrast,

the two measures of entropy reduction ∆ and ∆ correlate

very strongly with each other.

Fig. 4. The correlation between word-information measures

To check the correlation between word-information measures

디지털콘텐츠학회논문지(J. DCS) Vol. 19, No. 12, pp. 2393-2401, Dec. 2018

http://dx.doi.org/10.9728/dcs.2018.19.12.2393 2400

and cognitive measure (i.e., reading time), we performed the

linear mixed-effects regression model from Eq. (5). Using the

statistical hypothesis test with the std. error (which is the standard

deviation of the sampling distribution of a statistic, most

commonly of the mean) and the t value and Pr-value, we observe

in Table 7 that both surprisal and entropy reduction ∆ have

statistically significant p-values. However, we note in Table 7 that

∆ does not have a statistically significant p-value.

Table 7. Comparison between reading-time and word-

information measures

Estimate std. err t value Pr(>|t|)

intercept 2.677e+0 1.219e-02 219.515 <2e-16

surprisal -2.043e-03 9.936e-04 -2.056 0.0397

∆ -8.696e-4 1.058e-03 0.822 0.4109

∆ 2.375e-03 1.074e-03 2.212 0.0269

Ⅴ. CONCLUSION

The proposed system has shown that the reading-time effect of

both surprisal and entropy reduction can indeed result from a

sentence processing/comprehension with a single recurrent neural

network model. It has simulated sentence comprehension by

employing the Word2vec representation described by a sentence.

In this network model, surprisal and entropy reduction have been

defined by a probabilistic LSTM model rather than the traditional

language model. The amount of cognitive effort required to

process a word has been argued to depend on the uncertainty of

that word in an evolving sentence, as quantified by the entropy

over sentence probabilities.

We have tested this hypothesis more thoroughly than has been

done before by using an LSTM network for the estimation of

surprisal and entropy reduction. A comparison between these

estimates and word-reading time shows that entropy reduction

∆ is positively related to the word reading or processing

cognitive effort, confirming the entropy-reduction hypothesis.

The effect of surprisal is also correlated with the word reading or

processing cognitive effort.

ACKNOWLEDGEMENTS

This work was supported the Ministry of Education of the

Republic of Korea and the National Research Foundation of

Korea (NRF - 2017S1A5A2A01026286).

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural computation, pp. 1735-1780, 1997.

[2] D. Kleinschmidt, R. Raizada, and T. Jaegar, “Supervised and

unsupervised learning in phonetic adaption,” Proc. Of the

37th annual conference of the cognitive science society, CA,

pp.1129-1135, Jul. 2015.

[3] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent

Trends in Deep Learning Based Natural language

Processing,” arXiv:1708.02709, Oct. 2018.

[4] M. F. Boston, J. Hale, S. Vasishth, and R. Kliegl, “Parallel

processing and sentence comprehension difficulty,”

Language and Cognitive processes, Vol. 26, pp. 301-349,

Jan. 2011.

[5] Y. Liu and M. Zhang, “Neural Network Methods for Natural

Language Processing,” Computational Linguistics, Vol.

44, pp. 193-195, Mar. 2018.

[6] J. Hale, “Uncertainty about the rest of the sentence,”

Cognitive Science, Vol. 30, pp. 643-672, Feb. 2010.

[7] N. J. Smith and R. Levy, “The effect of word predictability

on reading time is logarithmic,” Cognition, Vol. 128, No.

3, pp. 302-319, Jun. 2013.

[8] J. Hale, “The information conveyed by words in sentences,”

Journal of Psycholinguistic Research, Vol. 32, pp.

101-123, Mar. 2003.

[9] S. L. Frank, L. J. Otten, G. Galli, and G. Vigliocco, “The

ERP response to the amount of information conveyed

bywords in sentences,” Brain & Language, Vol. 140, pp.

1-11, Jan. 2015.

[10] D. Bates, M. Machler, B. Bolker, and S. Walker, “Fitting

Linear Mixed-Effects Models Using lme4,” Journal of

Statistical Software, Vol. 67, pp. 1-48, Oct. 2015.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient

estimation of word representations in vector space,” arXiv:

1301.3781, Jan. 2013.

[12] H. Kang and J. Yang, “The Analogy Test Set Suitable to

Evaluate Word Embedding Model for Korean,” Journal of

Digital Contents Society, Vol. 19, pp. 1999-2008, Oct.

2018.

[13] J. Linck and I. Cunnings, “The utility and application of

mixed-effects models in second language research,”

Language Learning, Vol. 65, pp. 185-207, Jan. 2015.

[14] R. H. Baayen, D. H. Davidson, and D. M. Bates,

“Mixed-effects modeling with crossed random effects for

subjects and items,” Journal of Memory and Language,

Vol. 59, No. 4, pp. 390-412, Mar. 2008.

Sentence Comprehension with an LSTM Language Model

2401 http://www.dcs.or.kr

Euhee Kim

2002 : Dept. of Computer Engineering, Dongguk University (M.S.)

1995 : Dept. of Mathematics, The University of Connecticut (Ph.D.)

2000～current: Associate Professor, Dept. of Computer Science & Engineering, Shinhan

University

Interest Field： AI, Computational Linguistics, Big Data Computing, NLP

	Sentence Comprehension with an LSTM Language Model
	[요약]
	[Abstract]
	Ⅰ. INTRODUCTION
	Ⅱ. METHODS
	Ⅲ. PROPOSED LANGUAGE MODEL
	Ⅳ. THE RESULT: LANGUAGE MODEL, READING-TIME, & THEIR CORRELATION
	Ⅴ. CONCLUSION
	REFERENCES

